A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular dynamics study on the strengthening behavior of Delta and Omicron SARS-CoV-2 spike RBD improved receptor-binding affinity. | LitMetric

Molecular dynamics study on the strengthening behavior of Delta and Omicron SARS-CoV-2 spike RBD improved receptor-binding affinity.

PLoS One

Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.

Published: November 2022

The COVID-19 pandemic caused by a virus that can be transmitted from human to human via air droplets has changed the quality of life and economic systems all over the world. The viral DNA has mutated naturally over time leading to the diversity of coronavirus victims which has posed a serious threat to human security on a massive scale. The current variants have developed in a dominant way and are considered "Variants of Concern" by the World Health Organization (WHO). In this work, Kappa (B.1.617.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants were obtained to evaluate whether naturally occurring mutations have strengthened viral infectivity. We apply reliable in silico structural dynamics and energetic frameworks of the mutated S-RBD protein for ACE2-binding to analyze and compare the structural information related to the wild-type. In particular, the hotspot residues at Q493, Q498, and N501 on the S-RBD protein were determined as contributing factors to the employment stability of the relevant binding interface. The L452R mutation induces an increment of the hydrogen bonds formed by changing the Q493 environment for ACE2 binding. Moreover, the Q493K exchange in Omicron enables the formation of two additional salt bridges, leading to a strong binding affinity by increased electrostatic interaction energy. These results could be used in proposing concrete informative data for a structure-based design engaged in finding better therapeutics against novel variants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671323PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277745PLOS

Publication Analysis

Top Keywords

s-rbd protein
8
molecular dynamics
4
dynamics study
4
study strengthening
4
strengthening behavior
4
behavior delta
4
delta omicron
4
omicron sars-cov-2
4
sars-cov-2 spike
4
spike rbd
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!