Normal pregnancy is associated with vast adjustments in cardiovascular autonomic control. Sympathetic baroreflex sensitivity has been reported to be attenuated during pregnancy in animal models, but most studies in humans are cross-sectional and findings from longitudinal case studies are inconclusive. It remains unclear how sympathetic baroreflex sensitivity is altered longitudinally during pregnancy within an individual in different body postures. Therefore, this study examined the impact of posture on sympathetic baroreflex sensitivity in 24 normal-weight normotensive pregnant women. Spontaneous sympathetic baroreflex sensitivity was assessed during early (6-11 weeks) and late (32-36 weeks) pregnancy and 6-10 weeks postpartum in the supine posture and graded head-up tilt (30° and 60°). In addition, data from the postpartum period were compared with (and no different to) 18 age-matched non-pregnant women to confirm that the postpartum period was reflective of a non-pregnant condition (online supplement). When compared with postpartum (-3.8 ± 0.4 bursts/100 heartbeats/mmHg), supine sympathetic baroreflex sensitivity was augmented during early pregnancy (-5.9 ± 0.4 bursts/100 heartbeats/mmHg, P < 0.001). However, sympathetic baroreflex sensitivity at 30° or 60° head-up tilt was not different between any phase of gestation (P > 0.05). When compared to supine, sympathetic baroreflex sensitivity at 60° head-up tilt was significantly blunted during early (Δ2.0 ± 0.7 bursts/100 heartbeats/mmHg, P = 0.024) and late (Δ1.5 ± 0.6 bursts/100 heartbeats/mmHg, P = 0.049) pregnancy but did not change postpartum (Δ0.4 ± 0.6 bursts/100 heartbeats/mmHg, P = 1.0). These data show that time-course changes in sympathetic baroreflex sensitivity are dependent on the posture it is examined in and provides a foundation of normal blood pressure regulation during pregnancy for future studies in women at risk for adverse pregnancy outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440427PMC
http://dx.doi.org/10.1007/s10286-022-00903-zDOI Listing

Publication Analysis

Top Keywords

sympathetic baroreflex
32
baroreflex sensitivity
32
pregnancy
9
sympathetic
8
changes sympathetic
8
baroreflex
8
sensitivity
8
normal pregnancy
8
head-up tilt
8
postpartum period
8

Similar Publications

The brain is highly innervated by sympathetic nerve fibres; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO) administration (+8 Torr)], independently, and in combination. Twelve young and healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein.

View Article and Find Full Text PDF

Neurocardiology: Major mechanisms and effects.

J Electrocardiol

November 2024

Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States of America.

Neurocardiology is a broad interdisciplinary specialty investigating how the cardiovascular and nervous systems interact. In this brief introductory review, we describe several key aspects of this interaction with specific attention to cardiovascular effects. The review introduces basic anatomy and discusses physiological mechanisms and effects that play crucial roles in the interaction of the cardiovascular and nervous systems, namely: the cardiac neuraxis, the taxonomy of the nervous system, integration of sensory input in the brainstem, influences of the autonomic nervous system (ANS) on heart and vasculature, the neural pathways and functioning of the arterial baroreflex, receptors and ANS effects in the walls of blood vessels, receptors and ANS effects in excitable cells in the heart, ANS effects on heart rate and sympathovagal balance, endo-epicardial inhomogeneity, ANS effects with a balanced vagal and sympathetic stimulation, sympathovagal interaction, arterial baroreflex, baroreflex sensitivity and heart rate variability, arrhythmias and the arterial baroreflex, the cardiopulmonary baroreflex, the exercise pressor reflex, exercise-recovery hysteresis, mental stress, cardiac-cardiac reflexes, the cardiac sympathetic afferent reflex (CSAR), and neuromodulation.

View Article and Find Full Text PDF
Article Synopsis
  • Prader-Willi syndrome (PWS) is a rare genetic condition linked to cognitive and behavioral issues, obesity, and sleep problems, which may also involve autonomic nervous system dysfunction.
  • A study investigated heart rate variability and autonomic function during sleep and standing in children with PWS, comparing results with age-matched controls, revealing significant impairment in heart rate responses and high rates of sleep apnea among the PWS group.
  • Findings suggest decreased vagal modulation and possible sympathetic dysfunction in PWS children, which could increase their cardiovascular risks.
View Article and Find Full Text PDF
Article Synopsis
  • The study examined how body positions (supine vs. upright) affect heart and blood pressure responses during exercise in patients with postural orthostatic tachycardia syndrome (POTS) compared to healthy controls.
  • Results showed that POTS patients experienced increased heart rates and sympathetic activity while upright, along with decreased baroreflex sensitivity, indicating cardiovascular issues in this position.
  • Conversely, during supine exercise, POTS patients had similar cardiovascular responses to healthy controls, suggesting that supine exercise may be a better option for their rehabilitation.*
View Article and Find Full Text PDF

Baroreflex activation therapy through electrical carotid sinus stimulation.

Auton Neurosci

December 2024

Department for Cardiology, Angiology, Pneumology and Intensive Care Medicine, University of Cologne, Germany; Department of Cardiology and Intensive Care Medicine, Ev. Krankenhaus Köln-Weyertal, Cologne, Germany.

An imbalance between cardiovascular parasympathetic and sympathetic activity towards sympathetic predominance has been implicated in the pathogenesis of treatment-resistant arterial hypertension and heart failure. Arterial baroreceptors control efferent cardiovascular autonomic activity and have, therefore, been recognized as potential treatment targets. Baroreflex activation therapy through electrical carotid sinus stimulation is a device-based approach to modulate cardiovascular autonomic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!