End-point free energy calculations as a powerful tool have been widely applied in protein-ligand and protein-protein interactions. It is often recognized that these end-point techniques serve as an option of intermediate accuracy and computational cost compared with more rigorous statistical mechanic models (e.g., alchemical transformation) and coarser molecular docking. However, it is observed that this intermediate level of accuracy does not hold in relatively simple and prototypical host-guest systems. Specifically, in our previous work investigating a set of carboxylated-pillar[6]arene host-guest complexes, end-point methods provide free energy estimates deviating significantly from the experimental reference, and the rank of binding affinities is also incorrectly computed. These observations suggest the unsuitability and inapplicability of standard end-point free energy techniques in host-guest systems, and alteration and development are required to make them practically usable. In this work, we consider two ways to improve the performance of end-point techniques. The first one is the PBSA_E regression that varies the weights of different free energy terms in the end-point calculation procedure, while the second one is considering the interior dielectric constant as an additional variable in the end-point equation. By detailed investigation of the calculation procedure and the simulation outcome, we prove that these two treatments (i.e., regression and dielectric constant) are manipulating the end-point equation in a somehow similar way, i.e., weakening the electrostatic contribution and strengthening the non-polar terms, although there are still many detailed differences between these two methods. With the trained end-point scheme, the RMSE of the computed affinities is improved from the standard ~ 12 kcal/mol to ~ 2.4 kcal/mol, which is comparable to another altered end-point method (ELIE) trained with system-specific data. By tuning PBSA_E weighting factors with the host-specific data, it is possible to further decrease the prediction error to ~ 2.1 kcal/mol. These observations along with the extremely efficient optimized-structure computation procedure suggest the regression (i.e., PBSA_E as well as its GBSA_E extension) as a practically applicable solution that brings end-point methods back into the library of usable tools for host-guest binding. However, the dielectric-constant-variable scheme cannot effectively minimize the experiment-calculation discrepancy for absolute binding affinities, but is able to improve the calculation of affinity ranks. This phenomenon is somehow different from the protein-ligand case and suggests the difference between host-guest and biomacromolecular (protein-ligand and protein-protein) systems. Therefore, the spectrum of tools usable for protein-ligand complexes could be unsuitable for host-guest binding, and numerical validations are necessary to screen out really workable solutions in these 'prototypical' situations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10822-022-00487-w | DOI Listing |
Phys Life Rev
January 2025
Allen Discovery Center at Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
We argue that "processes versus objects" is not a useful dichotomy. There is, instead, substantial theoretical utility in viewing "objects" and "processes" as complementary ways of describing persistence through time, and hence the possibility of observation and manipulation. This way of thinking highlights the role of memory as an essential resource for observation, and makes it clear that "memory" and "time" are also mutually inter-defined, complementary concepts.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical Engineering, Canakkale Onsekiz Mart University,17100 Canakkale, Turkey.
Radioactive iodine, a key waste product of nuclear energy, has been a significant concern among nuclear materials because of its high volatility and its ability to easily enter the human metabolism. Porous materials containing a large number of N-heterocyclic units such as carbazole in the skeletons use as effective adsorbents showing high iodine capture capacities. Herein, a new carbazole-bismaleimide-based hyper-cross-linked porous organic polymer (CzBMI-POP) was successfully prepared from a new tetra-armed carbazole-maleimide monomer (Bis-Cz(BMI)), which contains biscarbazole units and maleimide side groups.
View Article and Find Full Text PDFActa Bioeng Biomech
June 2024
2Daping Hospital, Army Medical Center, Chongqing, China.
: This study explores how thoracic orientation affects lung pressure and injury outcomes from shock waves, building on earlier research that suggested human posture impacts injury severity. : A layered finite element model of the chest was constructed based on the Chinese Visual Human Dataset (CVH), including the rib and intercostal muscle layers. The dynamic response of the chest under 12 different angle-oriented shock waves under incident pressures of 200 kPa and 500 kPa was calculated.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States.
Natural enzymes are powerful catalysts, reducing the apparent activation energy for reactions and enabling chemistry to proceed as much as 10 times faster than the corresponding solution reaction. It has been suggested for some time that, in some cases, quantum tunneling can contribute to this rate enhancement by offering pathways through a barrier inaccessible to activated events. A central question of interest to both physical chemists and biochemists is the extent to which evolution introduces mechanisms below the barrier, or tunneling mechanisms.
View Article and Find Full Text PDFPLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!