Much progress has been made in the nanoscale analysis of nanostructures, while the mapping of key charge transport properties such as a carrier mobility remains a challenge, especially for one-dimensional systems. Here, we report the nanoscale mapping of carrier mobilities in carbon nanotube (CNT) networks and show that charge transport behaviors varied depending on network structures. In this work, the spatial distribution of localized charge transport properties such as mobilities and charge trap densities in CNT networks were mapped via a scanning noise microscopy. The mobility map was obtained from the conductivity maps measured at different back-gate biases, showing up to two orders of mobility variations depending on localized network structures. Furthermore, from the maps, correlations between mobility/conductivity and charge trap density were analyzed to determine charge transport mechanisms. In metallic CNT networks, the regions with rather () or () charge trap densities (mobilities) exhibited a or transport behavior, respectively. Interestingly, semiconducting CNT networks also exhibited a gradual transition from a diffusive to a ballistic transport behavior as the CNT mobility was increased by reaching the on-state with negative gate biases. The mapping of the cross-patterned CNT network showed that metallic CNT electrodes could achieve a good electrical contact with semiconducting CNTs without high contact resistance regions. Since this method allowed one to map versatile charge transport properties such as mobility, conductivity, and charge trap density, it can be a powerful tool for basic research about charge transport phenomena and practical device applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c10715DOI Listing

Publication Analysis

Top Keywords

charge transport
24
cnt networks
16
charge trap
16
transport properties
12
charge
10
nanoscale mapping
8
mapping carrier
8
carrier mobilities
8
carbon nanotube
8
transport
8

Similar Publications

Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.

View Article and Find Full Text PDF

In overcoming the barrier of rapid Li transfer in lithium-ion batteries at extreme temperatures, the desolvation process and interfacial charge transport play critical roles. However, tuning the solvation structure and designing a kinetically stable electrode-electrolyte interface to achieve high-rate charging and discharging remain a challenge. Here, a lithium nonafluoro-1-butanesulfonate (NFSALi) additive is introduced to optimize stability and the robust solid electrolyte interface film (SEI), realizing a rapid Li transfer process and the structural integrity of electrode materials.

View Article and Find Full Text PDF

NbO(OH) has emerged as a highly attractive photocatalyst based on its chemical stability, energetic band positions, and large active lattice sites. Compared to other various photocatalytic semiconductors, it can be synthesized easily. This study presents a systematic analysis of pristine and doped NbO(OH) based on recent developments in related research.

View Article and Find Full Text PDF

The growing demand for efficient, stable, and environmentally friendly photovoltaic technologies has motivated the exploration of nontoxic perovskite materials such as KGeCl. However, the performance of KGeCl-based perovskite solar cells (PSCs) depends heavily on the compatibility of charge transport layers (CTLs) and optimization of device parameters. In this study, six PSC configurations were simulated using SCAPS-1D software, incorporating CTLs such as Alq, CSTO, VO, PB, and SbS.

View Article and Find Full Text PDF

Blue Electroluminescent Carbon Dots Derived from Victorian Lignite.

ACS Omega

January 2025

Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.

Carbon dots (CDs) derived from natural products have attracted considerable interest as eco-friendly materials with a wide range of applications, such as bioimaging, sensors, catalysis, and solar energy harvesting. Among these applications, electroluminescence (EL) is particularly desirable for light-emitting devices in display and lighting technologies. Typically, EL devices incorporating CDs feature a layered structure, where CDs function as the central emissive layer, flanked by charge transport layers and electrodes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!