Motivation: Gene set analysis methods rely on knowledge-based representations of genetic interactions in the form of both gene set collections and protein-protein interaction (PPI) networks. However, explicit representations of genetic interactions often fail to capture complex interdependencies among genes, limiting the analytic power of such methods.

Results: We propose an extension of gene set enrichment analysis to a latent embedding space reflecting PPI network topology, called gene set proximity analysis (GSPA). Compared with existing methods, GSPA provides improved ability to identify disease-associated pathways in disease-matched gene expression datasets, while improving reproducibility of enrichment statistics for similar gene sets. GSPA is statistically straightforward, reducing to a version of traditional gene set enrichment analysis through a single user-defined parameter. We apply our method to identify novel drug associations with SARS-CoV-2 viral entry. Finally, we validate our drug association predictions through retrospective clinical analysis of claims data from 8 million patients, supporting a role for gabapentin as a risk factor and metformin as a protective factor for severe COVID-19.

Availability And Implementation: GSPA is available for download as a command-line Python package at https://github.com/henrycousins/gspa.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9805577PMC
http://dx.doi.org/10.1093/bioinformatics/btac735DOI Listing

Publication Analysis

Top Keywords

gene set
28
set enrichment
12
enrichment analysis
12
gene
9
set proximity
8
proximity analysis
8
representations genetic
8
genetic interactions
8
analysis
7
set
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!