Photocatalytic CO -to-Syngas Evolution with Molecular Catalyst Metal-Organic Framework Nanozymes.

Adv Mater

Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748, Garching, Germany.

Published: February 2023

Syngas, a mixture of CO and H , is a high-priority intermediate for producing several commodity chemicals, e.g., ammonia, methanol, and synthetic hydrocarbon fuels. Accordingly, parallel sunlight-driven catalytic conversion of CO and protons to syngas is a key step toward a sustainable energy cycle. State-of-the-art catalytic systems and materials often fall short as application-oriented concurrent CO and H evolution requires challenging reaction conditions which can hamper stability, selectivity, and efficiency. Here a light-harvesting metal-organic framework hosting two molecular catalysts is engineered to yield colloidal, water-stable, versatile nanoreactors for photocatalytic syngas generation with highly controllable product ratios. In-depth fluorescence, X-ray, and microscopic studies paired with kinetic analysis show that the host delivers energy efficiently to active sites, conceptually yielding nanozymes. This unlocked sustained CO reduction and H evolution with benchmark turnover numbers and record incident photon conversions up to 36%, showcasing a highly active and durable all-in-one material toward application in solar energy-driven syngas generation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202207380DOI Listing

Publication Analysis

Top Keywords

metal-organic framework
8
syngas generation
8
photocatalytic -to-syngas
4
-to-syngas evolution
4
evolution molecular
4
molecular catalyst
4
catalyst metal-organic
4
framework nanozymes
4
syngas
4
nanozymes syngas
4

Similar Publications

Sequential Pore Functionalization in MOFs for Enhanced Carbon Dioxide Capture.

JACS Au

December 2024

Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.

The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .

View Article and Find Full Text PDF

Novel transition metal-free synthetic protocols toward the construction of 2,3-dihydrobenzofurans: a recent update.

Front Chem

December 2024

Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland.

2,3-Dihydrobenzofurans are noteworthy scaffolds in organic and medicinal chemistry, constituting the structural framework of many of the varied medicinally active organic compounds. Moreover, a diverse variety of biologically potent natural products also contain this heterocyclic nucleus. Reflecting on the wide biological substantiality of dihydrobenzofurans, several innovative and facile synthetic developments are evolving to achieve these heterocycles.

View Article and Find Full Text PDF

Extraction of lignin from lignocellulosic biomass (bagasse) as a green corrosion inhibitor and its potential application of composite metal framework organics in the field of metal corrosion protection.

Int J Biol Macromol

December 2024

Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:

With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.

View Article and Find Full Text PDF

The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS).

View Article and Find Full Text PDF

A small molecule modified UiO series MOFs for simultaneous detection of Fe and Zn.

Talanta

December 2024

Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China. Electronic address:

Iron and zinc are two metal ions with important roles in biology, industry and the environment, however, the excess or deficiency of both Fe and Zn can have negative effects on organisms and environment. Therefore, the development of efficient method for simultaneous detection of Fe and Zn provides timely information on metal content, simplifies operations and improves efficiency. In this work, a small molecule (COOH-BPEA) of recognizing Zn modified the four metal-organic-framework (MOF) (UiO-66-X(66, OH, NH and OH/NH)) was developed for the simultaneous detection of Fe and Zn.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!