Ballistic Thermal Transport at Sub-10 nm Laser-Induced Hot Spots in GaN Crystal.

Adv Sci (Weinh)

School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China.

Published: January 2023

Ballistic thermal transport at nanoscale hotspots will greatly reduce the performance of a Gallium nitride (GaN) device when its characteristic length reaches the nanometer scale. In this work, the authors develop a tip-enhanced Raman thermometry approach to study ballistic thermal transport within the range of 10 nm in GaN, simultaneously achieving laser heating and measuring the local temperature. The Raman results show that the temperature increase from an Au-coated tip-focused hotspot up to two times higher (40 K) than that in a bare tip-focused region (20 K). To further investigate the possible mechanisms behind this temperature difference, the authors perform electromagnetic simulations to generate a highly focused heating field, and observe a highly localized optical penetration, within a range of 10 nm. The phonon mean free path (MFP) of the GaN substrate can thus be determined by comparing the numerical simulation results with the experimentally measured temperature increase which is in good agreement with the average MFP weighted by the mode-specific thermal conductivity, as calculated from first-principles simulations. The results demonstrate that the phonon MFP of a material can be rapidly predicted through a combination of experiments and simulations, which can find wide application in the thermal management of GaN-based electronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839872PMC
http://dx.doi.org/10.1002/advs.202204777DOI Listing

Publication Analysis

Top Keywords

ballistic thermal
12
thermal transport
12
range 10 nm
8
temperature increase
8
transport sub-10 nm
4
sub-10 nm laser-induced
4
laser-induced hot
4
hot spots
4
gan
4
spots gan
4

Similar Publications

Spatiotemporal pattern formation of membranes induced by surface molecular binding/unbinding.

Soft Matter

January 2025

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.

Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.

View Article and Find Full Text PDF

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

Fractional hyper-ballistic transport under external oscillating electric fields.

Chaos

December 2024

Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, Košice 042 00, Slovakia.

The generalized Langevin equation (GLE) for a tagged particle in a liquid of charged particles under the influence of external AC electric fields is studied. For the fractional memory kernel in the GLE, the mean square displacement (MSD) of the particle is studied analytically in both the underdamped and overdamped regimes. The MSD consists of a part corresponding to the absence of the external field and a part affected by the external field, which is expressed through the mean velocity of the particle.

View Article and Find Full Text PDF

Throughout history, seafarers have been exposed to potential thermal injuries during naval warfare; however, injury prevention, including advances in personal protective equipment, has saved lives. Thankfully, burn injuries have decreased over time, which has resulted in a significant clinical skills gap. Ships with only Role 1 (no surgical capability) assets have worse outcomes after burn injury compared to those with Role 2 (surgical capability) assets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!