Nowadays, there is no specific cure for Alzheimer's disease (AD), but the progression of AD can be improved by preventive interventions. The wine of Taxus chinensis fruit (TCFW) has the effect of improving human immunity and anti-aging as a long history of health care wine in folk, especially popular in the longevity villages in China, which may be potentially effective dietary products to improve AD. However, the chemical constituents and molecular mechanisms of TCFW still remain unknown. In this study, chemical profiling with UHPLC-QE-MS/MS, network pharmacology and molecular docking were integrated to fastly explore the potential chemicals and mechanisms of TCFW against AD. A total of 31 chemical components in TCFW were detected and identified compared with the solvent wine of TCFW by UHPLC-QE-MS/MS. Then, 27 potential key targets and 14 chemical compounds of TCFW were uncovered for the improvement of AD by network pharmacology and molecular docking. These 14 compounds were reported to have diverse bioactivities such as neuroprotective activity, antifibrotic activity, anticancer activity, antiviral activity and effectiveness in the treatment of neuronal injury, Alzheimer's disease, etc. Among these 27 targets affected by TCFW predicted by our approach, AKT1, PTGS2, NOS3, NOS2, INS, ESR1, ESR2, BDNF, IL6, IL1B, DRD2 and ACHE were significantly altered in AD. The GO and KEGG enrichment analyses revealed that TCFW mainly acted on oxidative response, inflammatory response, insulin secretion, amyloid fibril formation, neurodegenerative pathway-multiple diseases, Alzheimer's disease, longevity regulation pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, etc, which were the main pathogenesis of AD. PRACTICAL APPLICATIONS: Alzheimer's disease (AD) is a degenerative neurological disorder characterized by cognitive and behavioral dysfunction. Nowadays, there is no specific cure for AD, but the progression of AD can be improved by preventive interventions. The wine of Taxus chinensis fruit (TCFW) has the effect of improving human immunity and anti-aging as a long history of health care wine in folk, especially popular in the longevity villages in China, which may be potentially effective dietary products to improve AD. This study proposed a fastly integrated method to explore the potential chemicals and mechanisms of TCFW against AD by UHPLC-QE-MS/MS, network pharmacology and molecular docking. Here, we found that TCFW may ameliorate AD by reversing many biological events, including oxidative stress, inflammatory response, neuronal apoptosis, insulin secretion, amyloid fibril formation, and T cell co-stimulation, which may provide some insights for the development and research of anti-AD drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.14502 | DOI Listing |
Clin EEG Neurosci
January 2025
Palma Sola Neurology Associates, Bradenton, FL, USA.
Evoked potential metrics extracted from an EEG exam can provide novel sources of information regarding brain function. While the P300 occurring around 300 ms post-stimulus has been extensively investigated in relation to mild cognitive impairment (MCI), with decreased amplitude and increased latency, the P200 response has not, particularly in an oddball-stimulus paradigm. This study compares the auditory P200 amplitudes between MCI (28 patients aged 74(8)) and non-MCI, (35 aged 72(4)).
View Article and Find Full Text PDFProteomics
January 2025
Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
Background: Plasma biomarkers demonstrated potential in identifying amyloid pathology in early Alzheimer's disease. Different subtypes of subjective cognitive decline (SCD) may lead to different cognitive impairment conversion risks.
Objective: To investigate the differences of plasma biomarkers in SCD subtypes individuals, which were unclear.
J Alzheimers Dis
January 2025
Alzheimer Centrum Limburg, Mental Health and Neuroscience Research Institute (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands.
Background: There is consistent evidence for the contribution of modifiable risk factors to dementia risk, offering opportunities for primary prevention. Yet, most individuals are unaware of these opportunities.
Objective: To investigate whether online education about dementia risk reduction may be a low-level means to increase knowledge and support self-management of modifiable dementia risk factors.
J Alzheimers Dis
January 2025
Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.
Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!