Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that affects the salivary and lacrimal glands, as well as other organ systems like the lungs, kidneys and nervous system. SS can occur alone or in combination with another autoimmune disease, such as systemic lupus erythematosus (SLE) or rheumatoid arthritis. The etiology of SS is unknown but recent studies have revealed the implication of the activation of innate immune receptors, including Toll-like receptors (TLRs), mainly through the detection of endogenous nucleic acids, in the pathogenesis of systemic autoimmune diseases. Studies on SS mouse models suggest that TLRs and especially TLR7 that detects single-stranded RNA of microbial or endogenous origin can drive the development of SS and findings in SS patients corroborate those in mouse models. In this review, we will give an overview of the function and signaling of nucleic acid-sensing TLRs, the interplay of TLR7 with TLR8 and TLR9 in the context of autoimmunity, summarize the evidence for the critical role of TLR7 in the pathogenesis of SS and present a possible connection between SARS-CoV-2 and SS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659959PMC
http://dx.doi.org/10.3389/fimmu.2022.980400DOI Listing

Publication Analysis

Top Keywords

nucleic acid-sensing
8
toll-like receptors
8
sjögren's syndrome
8
systemic autoimmune
8
autoimmune disease
8
mouse models
8
acid-sensing toll-like
4
receptors players
4
players sjögren's
4
syndrome sjögren's
4

Similar Publications

Endosomal nucleic acid sensing by Toll-like receptors (TLRs) is central to antimicrobial immunity and several autoimmune conditions such as systemic lupus erythematosus (SLE). The innate immune adaptor TASL mediates, via the interaction with SLC15A4, the activation of IRF5 downstream of human TLR7, TLR8 and TLR9, but the pathophysiological functions of this axis remain unexplored. Here we show that SLC15A4 deficiency results in a selective block of TLR7/9-induced IRF5 activation, while loss of TASL leads to a strong but incomplete impairment, which depends on the cell type and TLR engaged.

View Article and Find Full Text PDF

Although viruses subvert innate immune pathways for their replication, there is evidence they can also co-opt antiviral responses for their benefit. The ubiquitous human pathogen, Herpes simplex virus-1 (HSV-1), encodes a protein (UL12.5) that induces the release of mitochondrial nucleic acid into the cytosol, which activates immune-sensing pathways and reduces productive replication in nonneuronal cells.

View Article and Find Full Text PDF

Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis.

Immunol Rev

January 2025

Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India.

Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation.

View Article and Find Full Text PDF

Transcriptomic landscapes of STING-mediated DNA-sensing reveal cellular response heterogeneity.

Int J Biol Macromol

February 2025

Center for Cell and Gene Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea; Biomedical Mathematics Group, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea; Department of Biopharmaceutical Convergence, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea. Electronic address:

Transfection of plasmid DNA (pDNA) encoding target genes is a routine tool in gene function studies and therapeutic applications. However, nucleic acid-sensing-mediated innate immune responses influence multiple intracellular signaling pathways. The stimulator of interferon genes (STING) is a crucial adapter protein for DNA sensors in mammalian cells.

View Article and Find Full Text PDF

During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme - the senescence-associated secretory phenotype (SASP) - driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!