Microglia shield the murine brain from damage mediated by the cytokines IL-6 and IFN-α.

Front Immunol

School of Life and Environmental Sciences, Charles Perkins Centre and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.

Published: November 2022

Sustained production of elevated levels of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is detrimental and directly contributes to the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Using transgenic mice with CNS-targeted production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN), we have recently demonstrated that microglia are prominent target and effector cells and mount stimulus-specific responses to these cytokines. In order to further clarify the phenotype and function of these cells, we treated GFAP-IL6 and GFAP-IFN mice with the CSF1R inhibitor PLX5622 to deplete microglia. We examined their ability to recover from acute microglia depletion, as well as the impact of chronic microglia depletion on the progression of disease. Following acute depletion in the brains of GFAP-IL6 mice, microglia repopulation was enhanced, while in GFAP-IFN mice, microglia did not repopulate the brain. Furthermore, chronic CSF1R inhibition was detrimental to the brain of GFAP-IL6 and GFAP-IFN mice and gave rise to severe CNS calcification which strongly correlated with the absence of microglia. In addition, PLX5622-treated GFAP-IFN mice had markedly reduced survival. Our findings provide evidence for novel microglia functions to protect against IFN-α-mediated neurotoxicity and neuronal dysregulation, as well as restrain calcification as a result of both IL-6- and IFN-α-induced neuroinflammation. Taken together, we demonstrate that CSF1R inhibition may be an undesirable target for therapeutic treatment of neuroinflammatory diseases that are driven by elevated IL-6 and IFN-α production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650248PMC
http://dx.doi.org/10.3389/fimmu.2022.1036799DOI Listing

Publication Analysis

Top Keywords

gfap-ifn mice
16
microglia
9
il-6 ifn-α
8
gfap-il6 gfap-ifn
8
microglia depletion
8
mice microglia
8
csf1r inhibition
8
mice
6
gfap-ifn
5
microglia shield
4

Similar Publications

Neuroinflammation can be triggered by a high-fat/high-fructose diet (HFFD), and CD36 may be an underlying mechanism. Lauric acid (LA), the major fatty acid in coconut oil, and resveratrol, the plant-based polyphenolic compound, may exert anti-inflammatory effects. Therefore, this study investigated the possible effects of LA and resveratrol on diet-induced neuroinflammation and CD36.

View Article and Find Full Text PDF

Microglia shield the murine brain from damage mediated by the cytokines IL-6 and IFN-α.

Front Immunol

November 2022

School of Life and Environmental Sciences, Charles Perkins Centre and the Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia.

Sustained production of elevated levels of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is detrimental and directly contributes to the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Using transgenic mice with CNS-targeted production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN), we have recently demonstrated that microglia are prominent target and effector cells and mount stimulus-specific responses to these cytokines. In order to further clarify the phenotype and function of these cells, we treated GFAP-IL6 and GFAP-IFN mice with the CSF1R inhibitor PLX5622 to deplete microglia.

View Article and Find Full Text PDF

Background: Elevated production of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is implicated in the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Transgenic mice with CNS-targeted chronic production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN) recapitulate important clinical and pathological features of these human diseases. The activation of microglia is a prominent manifestation found both in the human diseases and in the transgenic mice, yet little is known about how this contributes to disease pathology.

View Article and Find Full Text PDF

Astrocyte expression of a dominant-negative interferon-gamma receptor.

J Neurosci Res

October 2005

Department of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, California 90033, USA.

Interferon-gamma (IFN-gamma) is a major proinflammatory cytokine, and binding to its nearly ubiquitous receptor induces a wide variety of biological functions. To explore the role(s) of IFN-gamma signaling in astrocytes, transgenic mice (GFAP/IFN-gammaR1DeltaIC) expressing a dominant-negative IFN-gamma receptor alpha chain under control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter were generated. Transgenic mice developed normally, had normal astrocyte numbers and distribution, and exhibited no clinically overt phenotype.

View Article and Find Full Text PDF

Alpha/beta interferons (IFNs-alpha/beta) are cytokines that play an essential role in the host defense against viral infection. Our previous studies have shown that the key IFN signaling molecule STAT1 is highly elevated and activated in central nervous system neurons during viral infection and in transgenic mice with astrocyte production of IFN-alpha (glial fibrillary acidic protein [GFAP]-IFN-alpha), suggesting that neurons are a very responsive target cell population for IFNs. To elucidate the genomic response of neurons to IFN-alpha, we undertook studies both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!