Objectives: The goal of this study was to develop and evaluate a novel curriculum and assessment tool for Core Entrustable Professional Activity (EPA) 10 competencies and entrustment scoring in a cohort of medical students in their emergency medicine (EM) clerkship using a framework of individualized, ad hoc, formative assessment. Core EPA 10 is an observable workplace-based activity for graduating medical students to recognize a patient requiring urgent or emergent care and initiate evaluation and management.

Methods: This is a prospective, pretest-posttest study of medical students during their EM clerkship. Using the Thomas and Kern framework, we created a curriculum of simulation cases about chest pain/cardiac arrest and respiratory distress, which included novel assessment checklists, and instructional videos about recognizing and managing emergencies. Students were individually pretested on EPA 10 competencies using the simulation cases. Two raters scored students using standardized checklists. Students then watched instructional videos, underwent a posttest with the simulation cases, and were scored again by the two raters using the checklists. Differences between pretest and posttest scores were analyzed using paired t-tests and Wilcoxon signed-rank tests.

Results: Seventy-three out of 85 (86%) students completed the curriculum. Mean scores from pretest to final posttest in the chest pain/cardiac arrest and respiratory distress cases significantly improved from 14.8/19 (SD 1.91), to 17.1/19 (SD = 1.00), t(68) = 10.56,  < 0.001, and 8.5/13 (SD 1.79), to 11.1/13(SD 0.89), t(67) = 11.15,  < 0.001, respectively. The kappa coefficients were 0.909 ( = 2698,  < 0.001) and 0.931 ( = 1872,  < 0.001). Median modified Chen entrustment scores improved from 1b (i.e., "Watch me do this") to 2b (i.e., "I'll watch you") for the chest pain/cardiac arrest case ( < 0.001) and 1b/2a (i.e., "Watch me do this"/ "Let's do this together") to 3a (i.e. "You go ahead, and I'll double-check all of your findings") for the respiratory distress case ( < 0.001).

Conclusion: A new directed curriculum of standardized simulation cases and asynchronous instructional videos improved medical student performance in EPA 10 competencies and entrustment scores. This study provides a curricular framework to support formative individualized assessments for EPA 10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646936PMC
http://dx.doi.org/10.1002/aet2.10787DOI Listing

Publication Analysis

Top Keywords

medical students
16
simulation cases
12
core epa
8
assessment core
8
core entrustable
8
entrustable professional
8
professional activity
8
students
8
epa competencies
8
chest pain/cardiac
8

Similar Publications

Toward structured abdominal examination training using augmented reality.

Int J Comput Assist Radiol Surg

January 2025

Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.

Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.

Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.

View Article and Find Full Text PDF

This study reviews the prevalence of copper (Cu) deficiency in patients for metabolic and bariatric surgery (MBS), as well as the long-term outcomes related to the prevalence of Cu deficiency after undergoing MBS. A systematic literature search and meta-analysis were conducted in PubMed, Web of Science, and Scopus for articles published by August 31, 2024. The search terms included metabolic and bariatric surgery, weight loss surgery, metabolic surgery, obesity surgery, sleeve gastrectomy, gastric banding, gastric bypass, duodenal switch, duodenojejunal bypass, copper, copper deficiency, and hypocuposemia.

View Article and Find Full Text PDF

Modeling and analysis of explicit dynamics of foot landing.

Med Biol Eng Comput

January 2025

School of Medical Engineering, Department of Cardiology of The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, 453003, Henan, China.

The research aims to investigate the mechanical response of footfalls at different velocities to understand the mechanism of heel injury and provide a scientific basis for the prevention and treatment of heel fractures. A three-dimensional solid model of foot drop was constructed using anatomical structures segmented from medical CT scans, including bone, cartilage, ligaments, plantar fascia, and soft tissues, and the impact velocities of the foot were set to be 2 m/s, 4 m/s, 6 m/s, 8 m/s, and 10 m/s. Explicit kinetic analysis methods were used to investigate the mechanical response of the foot landing with different speeds to explore the damage mechanism of heel bone at different impact velocities.

View Article and Find Full Text PDF

Introduction: Ultrasound is important in heart diagnostics, yet implementing effective cardiac ultrasound requires training. While current strategies incorporate digital learning and ultrasound simulators, the effectiveness of these simulators for learning remains uncertain. This study evaluates the effectiveness of simulator-based versus human-based training in Focused Assessed with Transthoracic Echocardiography (FATE).

View Article and Find Full Text PDF

Purpose: Free Open Access Medical Education (FOAMed) is an emergent phenomenon within medical education. The rise of FOAMed resources has meant that medical education needs no longer be confined to the lecture theatre or the hospital setting, but rather, can be produced and shared amongst any individual or group with access to internet and a suitable device. This study presents a review of the use of FOAMed resources by students as part of their university medical education.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!