Effects of media length on biofilms and nitrification in moving bed biofilm reactors.

Biofilm

Department of Civil, Construction, and Environmental Engineering, MSC01 1070, University of New Mexico, Albuquerque, NM, 87106, USA.

Published: December 2022

Biofilms grown on free-floating plastic media are increasingly being used to cultivate biofilms in integrated fixed film activated sludge (IFAS) and moving bed bioreactor (MBBR) systems for wastewater treatment with the common goal of increasing nitrogen removal. Fundamental principles of fluid dynamics dictate that the length of internal media channels affects fluid velocities and shear forces across biofilm surfaces, which in turn should affect rates of mass transfer and biofilm growth and activity, but little is known about media length effects on water quality and biofilm characteristics. It was hypothesized that length affects biofilm thickness, microbial populations and their activities, and system performance. Nitrification rates and biofilm characteristics were monitored in parallel continuous flow, bench-scale MBBRs systems with media length as a controlled variable. Longer media produced biofilms with approximately twice the thickness and twice the mass per unit area than did media with one-third their length. Based on calculated head losses, the combined effects of length and constriction of internal channels led to an estimated 77% reduction in fluid velocity through the longer media relative to the shorter media. Longer media demonstrated more rapid development of nitrite oxidizing bacteria (NOB) activity than the shorter media over much of the study, as indicated by measurements of nitrite and nitrate, but AOB activity was similar in the two media. Both biomass and NOB activity were concentrated toward media ends, while ammonia oxidizing bacteria (AOB) activity was uniformly distributed across the media, based on testing of sectioned media. 16s rRNA amplicon sequencing indicated the presence of several putative heterotrophic nitrifying families, particularly , and as well as the autotrophic (which includes the NOB ) were common on both media throughout the study. The short media enriched for , which includes the AOB genus , while minimal autotrophic AOBs were found in the long media biofilm. These results provide insights to the design of media for improved performance, particularly with respect to nitrite versus nitrate production, which may be useful to improve nitrification and for energy saving processes for nitrogen removal such as deammonification. The research also provides fundamental insights regarding the effects of media geometry on biofilm structure and function, which advances our understanding of environmental factors affecting biofilm development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640347PMC
http://dx.doi.org/10.1016/j.bioflm.2022.100091DOI Listing

Publication Analysis

Top Keywords

media
19
media length
12
longer media
12
biofilm
9
effects media
8
moving bed
8
nitrogen removal
8
activity media
8
biofilm characteristics
8
shorter media
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Introduction: Despite efforts by health organizations to share evidence-based information, fake news hindered the promotion of social distancing and vaccination during the coronavirus disease 2019 (COVID-19) pandemic. This study analyzed COVID-19 knowledge and practices in a vulnerable area in northern Rio de Janeiro, acknowledging the influence of the complex social and economic landscape on public health perceptions.

Methodology: This cross-sectional study was conducted in Novo Eldorado - a low-income, conflict-affected neighborhood in Campos dos Goytacazes - using a structured questionnaire, following the peak of COVID-19 deaths in Brazil (July-December 2021).

View Article and Find Full Text PDF

Purpose: Tympanoplasty is a surgical procedure performed to cure middle ear infections and restore normal middle ear function. It is one of the most common procedures in otological surgery. Since Wullstein described tympanoplasty, the microscope has been a widely used surgical tool in otological surgery.

View Article and Find Full Text PDF

Mechanical Wear of Degraded Articular Cartilage.

Ann Biomed Eng

January 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Purpose: To evaluate the mechanical wear of cartilage with different types of degradation.

Methods: Bovine osteochondral explants were treated with interleukin-1β (IL-1β) to mimic inflammatory conditions, with chondroitinase ABC (ChABC) to specifically remove glycosaminoglycans (GAGs), or with collagenase to degrade the collagen network during 5 days of culture. Viscoelastic properties of cartilage were characterized via indentation.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!