Sex-specific differences may contribute to Alzheimer's disease (AD) development. AD is more prevalent in women worldwide, and female sex has been suggested as a disease risk factor. Nevertheless, the molecular mechanisms underlying sex-biased differences in AD remain poorly characterized. To this end, we analyzed the transcriptional changes in the entorhinal cortex of symptomatic and asymptomatic AD patients stratified by sex. Co-expression network analysis implemented by SWItchMiner software identified sex-specific signatures of switch genes responsible for drastic transcriptional changes in the brain of AD and asymptomatic AD individuals. Pathway analysis of the switch genes revealed that morphine addiction, retrograde endocannabinoid signaling, and autophagy are associated with both females with AD (F-AD) and males with (M-AD). In contrast, nicotine addiction, cell adhesion molecules, oxytocin signaling, adipocytokine signaling, prolactin signaling, and alcoholism are uniquely associated with M-AD. Similarly, some of the unique pathways associated with F-AD switch genes are viral myocarditis, Hippo signaling pathway, endometrial cancer, insulin signaling, and PI3K-AKT signaling. Together these results reveal that there are many sex-specific pathways that may lead to AD. Approximately 20-30% of the elderly have an accumulation of amyloid beta in the brain, but show no cognitive deficit. Asymptomatic females (F-asymAD) and males (M-asymAD) both shared dysregulation of endocytosis. In contrast, pathways uniquely associated with F-asymAD switch genes are insulin secretion, progesterone-mediated oocyte maturation, axon guidance, renal cell carcinoma, and ErbB signaling pathway. Similarly, pathways uniquely associated with M-asymAD switch genes are fluid shear stress and atherosclerosis, FcγR mediated phagocytosis, and proteoglycans in cancer. These results reveal for the first time unique pathways associated with either disease progression or cognitive resilience in asymptomatic individuals. Additionally, we identified numerous sex-specific transcription factors and potential neurotoxic chemicals that may be involved in the pathogenesis of AD. Together these results reveal likely molecular drivers of sex differences in the brain of AD patients. Future molecular studies dissecting the functional role of these switch genes in driving sex differences in AD are warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659968 | PMC |
http://dx.doi.org/10.3389/fnagi.2022.1009368 | DOI Listing |
Blood
January 2025
Graduate School of Medicine and Frontier Biosciences, Osaka University, Japan.
The maintenance of cellular redox balance is crucial for cell survival and homeostasis and is disrupted with aging. Selenoproteins, comprising essential antioxidant enzymes, raise intriguing questions about their involvement in hematopoietic aging and potential reversibility. Motivated by our observation of mRNA downregulation of key antioxidant selenoproteins in aged human hematopoietic stem cells (HSCs) and previous findings of increased lipid peroxidation in aged hematopoiesis, we employed tRNASec gene (Trsp) knockout (KO) mouse model to simulate disrupted selenoprotein synthesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.
Understanding the role of metabolic processes during inner ear development is essential for identifying targets for hair cell (HC) regeneration, as metabolic choices play a crucial role in cell proliferation and differentiation. Among the metabolic processes, growing evidence shows that glucose metabolism is closely related to organ development. However, the role of glucose metabolism in mammalian inner ear development and HC regeneration remains unclear.
View Article and Find Full Text PDFCells
December 2024
Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy.
Background: Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (, , , and ) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs).
View Article and Find Full Text PDFChildren (Basel)
December 2024
Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.
View Article and Find Full Text PDFEssential genes, estimated at approximately 20% of the genome, are broadly expressed and required for reproductive success. They are difficult to study, as interfering with their function leads to premature death. Transcription is one of the essential functions of life, and the multi-protein Mediator complex coordinates the regulation of gene expression at nearly every eukaryotic promoter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!