The Uganda Genome Resource (UGR) is a well-characterized genomic database with a range of phenotypic communicable and non-communicable diseases and risk factors generated from the Uganda General Population Cohort (GPC), a population-based open cohort established in 1989. The UGR comprises genotype data on ∼5,000 and whole-genome sequence data on ∼2,000 Ugandan GPC individuals from 10 ethno-linguistic groups. Leveraging other platforms at MRC/UVRI and LSHTM Uganda Research Unit, there is opportunity for additional sample collection to expand the UGR to advance scientific discoveries. Here, we describe UGR and highlight how it is providing opportunities for discovery of novel disease susceptibility genetic loci, refining association signals at new and existing loci, developing and testing polygenic scores to determine disease risk, assessing causal relations in diseases, and developing capacity for genomics research in Africa. The UGR has the potential to develop to a comparable level of European and Asian large-scale genomic initiatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646479 | PMC |
http://dx.doi.org/10.1016/j.xgen.2022.100209 | DOI Listing |
PLoS One
January 2025
Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.
View Article and Find Full Text PDFGlob Ment Health (Camb)
November 2024
South African Medical Research Council Unit on the Genomics of Brain Disorders, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Background: There is a strong link between trauma exposure and serious mental health conditions (SMHCs), such as schizophrenia and bipolar disorder. The majority of research in the field has focused on childhood trauma as a risk factor for developing an SMHC and on samples from high-income countries. There is less research on having an SMHC as a risk factor for exposure to traumatic events, and particularly on populations in low- and middle-income countries (LMICs).
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.
View Article and Find Full Text PDFViruses
November 2024
MRC/UVRI & LSHTM Uganda Research Unit, Entebbe 256, Uganda.
The emergence of SARS-CoV-2 variants has heightened concerns about vaccine efficacy, posing challenges in controlling the spread of COVID-19. As part of the COVID-19 Vaccine Effectiveness and Variants (COVVAR) study in Uganda, this study aimed to genotype and characterize SARS-CoV-2 variants in patients with COVID-19-like symptoms who tested positive on a real-time PCR. Amplicon deep sequencing was performed on 163 oropharyngeal/nasopharyngeal swabs collected from symptomatic patients.
View Article and Find Full Text PDFmedRxiv
December 2024
Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD.
Carotenoids are dietary bioactive compounds with health effects that are biomarkers of fruit and vegetable intake. Here, we examine genetic associations with plasma and skin carotenoid concentrations in two rigorously phenotyped human cohorts (n=317). Analysis of genome-wide SNPs revealed heritability to vary by genetic ancestry (h=0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!