The crop production of quinoa (.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene- and gene- may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645111PMC
http://dx.doi.org/10.3389/fpls.2022.988861DOI Listing

Publication Analysis

Top Keywords

drought tolerance
16
drought stress
12
tolerance quinoa
12
quinoa
10
drought
10
drought-tolerant quinoa
8
quinoa genotype
8
drought rewatering
8
differentially expressed
8
drought-tolerance varieties
8

Similar Publications

Identification of the cysteine-rich transmembrane module CYSTM family in upland cotton and functional analysis of GhCYSTM5_A in cold and drought stresses.

Int J Biol Macromol

December 2024

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050051, Hebei, China. Electronic address:

Abiotic stress poses adverse impacts on cotton production, raising demands for a better understanding of stress-response mechanisms and developing strategies to improve plant performance to cope with stress. CYSTM (Cysteine-rich transmembrane module) is a widely distributed and conserved family in eukaryotes that performs potential functions in stress tolerance. However, CYSTM genes and their role in stress response is uncharacterized in cotton.

View Article and Find Full Text PDF

The role of trehalose metabolism in plant stress tolerance.

J Adv Res

December 2024

College of Forestry and Grasslands, Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, Jilin Agriculture University, Changchun 130118, China. Electronic address:

Background: Trehalose is a nonreducing disaccharide containing two glucose molecules linked through an α,α-1,1-glycosidic bond. This unique chemical structure causes trehalose levels to fluctuate significantly in plants under stress, where it functions as an osmoprotectant, enhancing plant resistance to stress. Previous studies have confirmed that the trehalose synthesis pathway is widely conserved across most plants.

View Article and Find Full Text PDF

Chinese jujube (Ziziphus jujuba Mill.) exhibits a remarkable resilience to both drought and salinity. Additionally, it is characterized by a high sugar content, with sucrose being the predominant component of its soluble sugars.

View Article and Find Full Text PDF

As a new plant hormone, strigolactone not only promotes leaf senescence, inhibits plant branching and regulates root structure, but also plays an important role in abiotic stress resistance. However, little is known about the function of VvCCD7 under abiotic stress, a key gene for the synthesis of strigolactone in grapevine. In this study, VvCCD7 gene was cloned from grape leaves of 'Cabernet Sauvignon'.

View Article and Find Full Text PDF

LcMYB5, an R2R3-MYB family gene from Lonicera caerulea L., enhances drought and salt tolerance in transgenic tobacco and blue honeysuckle.

J Plant Physiol

December 2024

Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China; National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, 150030, China. Electronic address:

MYB transcription factors exert crucial functions in enhancing plant stress tolerance, which is impacted by soil drought and salinity. In our study, the R2R3-type MYB transcription factor gene LcMYB5 from blue honeysuckle (Lonicera caerulea L.) was successfully cloned and identified, and confirmed its nuclear localization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!