Crop diseases cause significant food and economic losses. We examined the joint, probabilistic, long-term, bio-economic impact of five major fungal pathogens of wheat on global wheat production by combining spatialized estimates of their climate suitability with global wheat production and modeled distributions of potential crop losses. We determined that almost 90% of the global wheat area is at risk from at least one of these fungal diseases, and that the recurring losses attributable to this set of fungal diseases are upwards of 62 million tons of wheat production per year. Our high-loss regime translates to around 8.5% of the world's wheat production on average-representing calories sufficient to feed up to 173 million people each year. We estimate that a worldwide research expenditure of $350-$974 million (2018 prices) annually on these five fungal diseases of wheat, let alone other pathogens, can be economically justified, equivalent to 2 to 5 times more than the amount we estimate is currently spent on wheat disease-related public R&D.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659964PMC
http://dx.doi.org/10.3389/fpls.2022.1034600DOI Listing

Publication Analysis

Top Keywords

wheat production
20
global wheat
16
fungal diseases
12
wheat
9
production
5
multi-peril pathogen
4
pathogen risks
4
global
4
risks global
4
production probabilistic
4

Similar Publications

Background: Canna edulis is a high-quality resistant starch raw material, especially for making flour products. This study aimed to investigate the effect of Canna edulis starch (CES) on the properties of flour, rheology of dough and quality of semi-dry noodles. The CES replaced part of the wheat flour in the semi-dry noodle formula.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Applying hollow octahedron PtNPs/Pd-CuO nanozyme and highly conductive AuPtNPs/Ni-Co NCs to colorimetric -electrochemical dual-mode aptasensor for AFB1 detection.

Anal Chim Acta

February 2025

College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, China.

Background: Aflatoxin B1 (AFB1) is a secondary metabolite produced by Aspergillus flavus and Aspergillus parasiticus. This toxin is highly carcinogenic and toxic, posing a serious threat to human and animal health. AFB1 primarily enters the human body through contaminated food, particularly peanuts, corn, nuts, and wheat.

View Article and Find Full Text PDF

Compatibility of Whole Wheat-Based Composite Flour in the Development of Functional Foods.

Food Technol Biotechnol

December 2024

Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda, Sri Lanka.

Over the last decades, eating habits have shifted towards convenient foods with shorter preparation times due to people's busy lifestyles and higher living standards. Rapid changes in dietary patterns and lifestyles with the industrialization and globalisation have led to the escalating incidence of chronic diseases, which has paved the way to greater interest in dietary changes regarding nutritional status and health benefits. Composite flour is a combination of wheat and non-wheat flours or exclusively non-wheat flour with improved nutritional value, therapeutic properties and functional characteristics.

View Article and Find Full Text PDF

SL70, a Novel Exopolysaccharide Producer from Traditional Sourdough Fermentation of Einkorn ( L. ssp. ).

Food Technol Biotechnol

December 2024

Department of Food Engineering, Gumushane University, Baglarbasi Road, 29100 Gumushane, Turkey.

Research Background: Given the potential of microbial exopolysaccharides from lactic acid bacteria in various industrial processes, alternative sources for the isolation of lactic acid bacteria are highly topical. In this study, we used a traditional sourdough from einkorn ( L. ssp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!