A weight optimization-based transfer learning approach for plant disease detection of New Zealand vegetables.

Front Plant Sci

Department of Mechanical and Electrical Engineering, School of Food and Advanced Technology, Massey University, Auckland, New Zealand.

Published: October 2022

Deep learning (DL) is an effective approach to identifying plant diseases. Among several DL-based techniques, transfer learning (TL) produces significant results in terms of improved accuracy. However, the usefulness of TL has not yet been explored using weights optimized from agricultural datasets. Furthermore, the detection of plant diseases in different organs of various vegetables has not yet been performed using a trained/optimized DL model. Moreover, the presence/detection of multiple diseases in vegetable organs has not yet been investigated. To address these research gaps, a new dataset named NZDLPlantDisease-v2 has been collected for New Zealand vegetables. The dataset includes 28 healthy and defective organs of beans, broccoli, cabbage, cauliflower, kumara, peas, potato, and tomato. This paper presents a transfer learning method that optimizes weights obtained through agricultural datasets for better outcomes in plant disease identification. First, several DL architectures are compared to obtain the best-suited model, and then, data augmentation techniques are applied. The Faster Region-based Convolutional Neural Network (RCNN) Inception ResNet-v2 attained the highest mean average precision (mAP) compared to the other DL models including different versions of Faster RCNN, Single-Shot Multibox Detector (SSD), Region-based Fully Convolutional Networks (RFCN), RetinaNet, and EfficientDet. Next, weight optimization is performed on datasets including PlantVillage, NZDLPlantDisease-v1, and DeepWeeds using image resizers, interpolators, initializers, batch normalization, and DL optimizers. Updated/optimized weights are then used to retrain the Faster RCNN Inception ResNet-v2 model on the proposed dataset. Finally, the results are compared with the model trained/optimized using a large dataset, such as Common Objects in Context (COCO). The final mAP improves by 9.25% and is found to be 91.33%. Moreover, the robustness of the methodology is demonstrated by testing the final model on an external dataset and using the stratified k-fold cross-validation method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641257PMC
http://dx.doi.org/10.3389/fpls.2022.1008079DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
plant disease
8
zealand vegetables
8
plant diseases
8
agricultural datasets
8
rcnn inception
8
inception resnet-v2
8
faster rcnn
8
model
5
dataset
5

Similar Publications

Background: There is a need to systematically compare and contrast mortality predictors and disparities in people with intellectual disabilities (ID) for global prevention strategy development.

Method: Bibliographic databases and grey literature were searched using systematic review methodology and the machine learning tool "Abstrackr."

Results: Fifty-four relevant articles and reports published from 2010 to 2019 were identified.

View Article and Find Full Text PDF

Background: In pancreatic surgery Postoperative pancreatic fistula (POPF) represents the most dreaded complication, for which pancreatic texture is acknowledged as one of the strongest predictors. No consensual objective reference has been defined to evaluate the pancreas composition. The presented study aimed to mine histology data of the pancreatic tissue composition with AI assist and correlate it with clinic-pathological parameters derived from the RECOPANC study.

View Article and Find Full Text PDF

Voice Quality as Digital Biomarker in Bipolar Disorder: A Systematic Review.

J Voice

January 2025

Department of Surgery, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), Mons, Belgium; Division of Laryngology and Bronchoesophagology, Department of Otolaryngology Head Neck Surgery, EpiCURA Hospital, Baudour, Belgium; Department of Otolaryngology-Head and Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France; Department of Otolaryngology, Elsan Hospital, Paris, France. Electronic address:

Background: Voice analysis has emerged as a potential biomarker for mood state detection and monitoring in bipolar disorder (BD). The systematic review aimed to summarize the evidence for voice analysis applications in BD, examining (1) the predictive validity of voice quality outcomes for mood state detection, and (2) the correlation between voice parameters and clinical symptom scales.

Methods: A PubMed, Scopus, and Cochrane Library search was carried out by two investigators for publications investigating voice quality in BD according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statements.

View Article and Find Full Text PDF

A neurocomputational account of multi-line electronic gambling machines.

Trends Cogn Sci

January 2025

Department of Psychology, Biological Psychology, University of Cologne, Cologne, Germany. Electronic address:

Multi-line electronic gambling machines (EGMs) are strongly associated with problem gambling. Dopamine (DA) plays a central role in substance-use disorders, which share clinical and behavioral features with disordered gambling. The structural design features of multi-line EGMs likely lead to the elicitation of various dopaminergic effects within their nested anticipation-outcome structure.

View Article and Find Full Text PDF

Many atopic dermatitis (AD) patients have suboptimal responses to Dupilumab therapy. This study identified key genes linked to this resistance using multi-omics approaches to benefit more patients. We selected a prospective cohort of 54 CE treated with Dupilumab from the GEO database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!