Dilated convolution capsule network for apple leaf disease identification.

Front Plant Sci

School of Electronic Information, Xijing University, Xi'an, China.

Published: November 2022

Accurate and rapid identification of apple leaf diseases is the basis for preventing and treating apple diseases. However, it is challenging to identify apple leaf diseases due to their various symptoms, different colors, irregular shapes, uneven sizes, and complex backgrounds. To reduce computational cost and improve training results, a dilated convolution capsule network (DCCapsNet) is constructed for apple leaf disease identification based on a capsule network (CapsNet) and two dilated Inception modules with different dilation rates. The network can obtain multi-scale deep-level features to improve the classification capability of the model. The dynamic routing algorithm is used between the front and back layers of CapsNet to make the model converge quickly. In DCCapsNet, dilated Inception instead of traditional convolution is used to increase the convolution receptive fields and extract multi-scale features from disease leaf images, and CapsNet is used to capture the classification features of changeable disease leaves and overcome the overfitting problem in the training network. Extensive experiment results on the apple disease leaf image dataset demonstrate that the proposed method can effectively identify apple diseases. The method can realize the rapid and accurate identification of apple leaf disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664159PMC
http://dx.doi.org/10.3389/fpls.2022.1002312DOI Listing

Publication Analysis

Top Keywords

apple leaf
20
capsule network
12
leaf disease
12
dilated convolution
8
convolution capsule
8
apple
8
disease identification
8
identification apple
8
leaf diseases
8
apple diseases
8

Similar Publications

Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.

View Article and Find Full Text PDF

Precision pesticide application mainly relies on canopy volume, resulting in varied application effectiveness across different density areas of orchard trees. This study examined pesticide application effectiveness based on the spray wind, canopy volume, and leaf area within the canopy, providing variable bases for precise regulation of spray wind and pesticide dosage. The study addresses the knowledge gap by utilizing laser detection and ranging (LiDAR) to measure the thickness and leaf area of orchard tree canopies.

View Article and Find Full Text PDF

Ecotoxicological impact of succinate dehydrogenase inhibitor (SDHI) fungicides on non-targeted organisms: a review.

Ecotoxicology

January 2025

Amity Institute of Environmental Sciences, Amity University, Sector-125, Noida, 201301, Uttar Pradesh, India.

As the global population continues to grow, the use of pesticides to increase food production is projected to escalate. Pesticides are critical in plant protection, offering a powerful defense against fungal diseases such as apple scab, leaf spot, sclerotinia rot, damping off, sheath blight, and root rot, which threaten crops like cereals, corn, cotton, soybean, sugarcane, tuberous vegetables, and ornamentals. Succinate Dehydrogenase Inhibitor (SDHI) fungicides represent a novel class essential for controlling fungal pathogens and bolstering food security.

View Article and Find Full Text PDF

Pesticide dislodgeable foliar residues (DFR) and their dissipation half-time (DT) after application are important parameters for exposure and risk assessment from intended reentry activities or unintended dermal contact with treated crops. To understand the impact of agronomic factors on residue level a statistical based evaluation was conducted using ten DFR studies, with pyrimethanil applied in Scala to strawberries, raspberries, peppers, apples, and grapes, 30 trials in total. Influences on initial DFR (DFR0) and DT were investigated by multivariate linear regression analysis.

View Article and Find Full Text PDF

L. is a tropical fruit, cultivated in various provinces of China, such as Guangxi, Taiwan, and Yunnan. This fruit has good edible and medicinal value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!