Background: Artificial intelligence (AI), which has been used to diagnose diabetic retinopathy (DR), may impact future medical and ophthalmic practices. Therefore, this study explored AI's general applications and research frontiers in the detection and gradation of DR.

Methods: Citation data were obtained from the Web of Science Core Collection database (WoSCC) to assess the application of AI in diagnosing DR in the literature published from January 1, 2012, to June 30, 2022. These data were processed by CiteSpace 6.1.R3 software.

Results: Overall, 858 publications from 77 countries and regions were examined, with the United States considered the leading country in this domain. The largest cluster labeled "automated detection" was employed in the generating stage from 2007 to 2014. The burst keywords from 2020 to 2022 were artificial intelligence and transfer learning.

Conclusion: Initial research focused on the study of intelligent algorithms used to localize or recognize lesions on fundus images to assist in diagnosing DR. Presently, the focus of research has changed from upgrading the accuracy and efficiency of DR lesion detection and classification to research on DR diagnostic systems. However, further studies on DR and computer engineering are required.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659570PMC
http://dx.doi.org/10.3389/fendo.2022.1036426DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
diabetic retinopathy
8
systematic bibliometric
4
bibliometric visualized
4
visualized analysis
4
analysis hotspots
4
hotspots trends
4
trends application
4
application artificial
4
intelligence diabetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!