A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigating the effect of non-ideal conditions on the performance of a planar CHNHPbI-based perovskite solar cell through SCAPS-1D simulation. | LitMetric

The difference between the simulation and experimental results of solar cells has always been challenging for researchers. Some simplifying assumptions in the simulation programs are the most common reason for this content. However, in some simulation programs, utilizing some nonidealities, the simulated solar cell can approach real conditions. In the present study, we attempted to simulate the conventional FTO/TiO/CHNHPbI/Spiro-OMeTAD/Au perovskite solar cell by considering resistance paths, reflection in front contact (FTO), and recombination (radiative and Auger) through SCAPS-1D software. For this, the effect of each of these nonidealities was investigated step by step. The efficiency results of the studied solar cell represented significant differences between the efficiency of the device before and after the application of these conditions that was from 19.26% to 8.40%. This significant decrement is mainly due to the reflection and radiative recombination. Besides, to optimize each of the active layers' essential properties, the effect of mentioned parameters, including thickness and doping density, was investigated in terms of efficiency and recombination plots. The novelty of this research was in employing the non-ideal conditions in the simulation phase and approximating them to the reported experimental works' outcomes. Moreover, utilizing the recombination plots helped a lot in choosing the optimum layer property, e.g., doping density selection. Finally, after optimizing all the properties mentioned above, the efficiency was enhanced by about 4% and reached PCE = 12.83%. The general results represent that despite the significant reduction in the cell performance, the simulated cell is closer to the experimental conditions and offers a better model of a solar cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663874PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e11471DOI Listing

Publication Analysis

Top Keywords

solar cell
20
non-ideal conditions
8
perovskite solar
8
simulation programs
8
properties mentioned
8
doping density
8
recombination plots
8
cell
7
solar
6
conditions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!