Study on prevention and treatment of capillary water rise for construction waste expansive soil subgrade.

Heliyon

College of Civil and Traffic Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.

Published: November 2022

This paper solves the technical difficulties of the capillary water rising height of the construction waste improved expansive soil subgrade (CWS), analyses the capillary water rising mechanism of the construction waste improved expansive soil subgrade cushion and evaluates the improvement effect of the improved cushion by comparing different working conditions with simulation software. The analysis results show that: (1) a reasonable ratio of the improved subgrade bed can effectively improve the porosity of the cushion layer, thus effectively inhibiting capillary water rising height. (2) the practical improvement of the thickness of the cushion layer can slow the matrix suction effect of expansive soil, (3) the construction waste had a more significant influence on the particle gradation for the capillary water rise, poor grading cushion layer has a significant influence on the capillary water rise, (4) the construction waste particles in the improved graded cushion of construction waste have strong water absorption, which improves the matrix suction effect of expansive soil. (5) Through experiments and simulation tests, this paper concludes that the optimal grade subgrade bedding of construction waste expansive soil is of specific theoretical value and practical significance for developing the construction waste material transformation subgrade. Keyword: Construction Waste, the capillary water rise mechanism, well-graded CWS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647196PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e11252DOI Listing

Publication Analysis

Top Keywords

construction waste
36
capillary water
28
expansive soil
24
water rise
16
soil subgrade
12
water rising
12
cushion layer
12
construction
9
waste
9
water
8

Similar Publications

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Evaluating cardiac performance in beagle dogs: Transesophageal echocardiography and myocardial work assessment.

Heliyon

January 2025

Department of Ultrasound Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People's Republic of China.

Objectives: This study aimed to establish standard transesophageal echocardiographic (TEE) measurements of left ventricular (LV) morphology, function, and myocardial work parameters in healthy Beagle dogs using pressure-strain loops (PSL). Additionally, it sought to standardize optimal TEE imaging techniques and explore the potiential application of myocardial work analyis in veterinary medicine.

Methods: Thirty-seven healthy male Beagle dogs were anesthetized, intubated, and mechanically ventilated for TEE examinations.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Gases and dissolved black carbon (DBC) formed during pyrolysis of nitrogen-rich feedstock would affect atmospheric and aquatic environments. Yet, the mechanisms driving biomass gas evolution and DBC formation are poorly understood. Using thermogravimetric-Fourier transform infrared spectrometry and two-dimensional correlation spectroscopy, we correlated the temperature-dependent primary noncondensable gas release sequence (HO → CO → HCN, NH → CH → CO) with specific defunctionalization stages in the order: dehydration, decarboxylation, denitrogenation, demethylation, and decarbonylation.

View Article and Find Full Text PDF

Metastable fcc-Ru/fcc-RuO Heterointerphase for Hydrogen Evolution.

Inorg Chem

January 2025

School of Materials and Physics and Center of Mineral Resource Waste Recycling, Jiangsu Key Laboratory for Clean Utilization of Carbon Resources, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China.

The metastable crystal structure is difficult to synthesize and maintain but normally acts as special active sites with improved functional properties. Herein, a moderate crystallographic transformation strategy is used to effectively synthesize metastable RuO. By controlling the degree of oxidation, we constructed different heterophase Ru/RuO catalysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!