Machine learning has become a powerful tool for systems biologists, from diagnosing cancer to optimizing kinetic models and predicting the state, growth dynamics, or type of a cell. Potential predictions from complex biological data sets obtained by "omics" experiments seem endless, but are often not the main objective of biological research. Often we want to understand the molecular mechanisms of a disease to develop new therapies, or we need to justify a crucial decision that is derived from a prediction. In order to gain such knowledge from data, machine learning models need to be extended. A recent trend to achieve this is to design "interpretable" models. However, the notions around interpretability are sometimes ambiguous, and a universal recipe for building well-interpretable models is missing. With this work, we want to familiarize systems biologists with the concept of model interpretability in machine learning. We consider data sets, data preparation, machine learning methods, and software tools relevant to omics research in systems biology. Finally, we try to answer the question: "What is interpretability?" We introduce views from the interpretable machine learning community and propose a scheme for categorizing studies on omics data. We then apply these tools to review and categorize recent studies where predictive machine learning models have been constructed from non-sequential omics data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650551 | PMC |
http://dx.doi.org/10.3389/fmolb.2022.926623 | DOI Listing |
BMC Bioinformatics
December 2024
College of Computer Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
As a heterogeneous disease, prostate cancer (PCa) exhibits diverse clinical and biological features, which pose significant challenges for early diagnosis and treatment. Metabolomics offers promising new approaches for early diagnosis, treatment, and prognosis of PCa. However, metabolomics data are characterized by high dimensionality, noise, variability, and small sample sizes, presenting substantial challenges for classification.
View Article and Find Full Text PDFBMC Cancer
December 2024
Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Background: Accurate prediction of pathological complete response (pCR) and disease-free survival (DFS) in locally advanced rectal cancer (LARC) patients undergoing neoadjuvant chemoradiotherapy (NCRT) is essential for formulating effective treatment plans. This study aimed to construct and validate the machine learning (ML) models to predict pCR and DFS using pathomics.
Method: A retrospective analysis was conducted on 294 patients who received NCRT from two independent institutions.
J Vasc Access
December 2024
Department of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan.
Introduction: Vascular access (VA) is essential for patients with hemodialysis, and its dysfunction is a major complication that can reduce quality of life or even threaten life. VA patency is not only difficult to predict on an individual basis, but also challenging to predict in real-time. To overcome this challenge, this study aimed to develop a machine learning approach to predict 6-month primary patency (PP) using photoplethysmography (PPG) signals acquired from the tips of both index fingers.
View Article and Find Full Text PDFAging Clin Exp Res
December 2024
Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yi Shan Road, Shanghai, 200233, China.
Background: Eye-movement can reflect cognition and provide information on the neurodegeneration, such as Alzheimer's disease (AD). The high cost and limited accessibility of eye-movement recordings have hindered their use in clinics.
Aims: We aim to develop an AI-driven eye-tracking tool for assessing AD using mobile devices with embedded cameras.
Nan Fang Yi Ke Da Xue Xue Bao
December 2024
Department of Radiology, Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics of Guangdong Province), Guangzhou 510630, China.
Methods: We retrospectively collected CT scan data from 276 patients with pathologically confirmed primary bone tumors from 4 medical centers in Guangdong Province between January, 2010 and August, 2021. A convolutional neural network (CNN) was employed as the deep learning architecture. The optimal baseline deep learning model (R-Net) was determined through transfer learning, and an optimized model (S-Net) was obtained through algorithmic improvements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!