AI Article Synopsis

  • Hepatocellular carcinoma (HCC) is a common cancer, and researchers developed a predictive model for early tumor recurrence using radiomic features from the area around the tumor.
  • The model was based on data from 175 patients, using imaging techniques to analyze features within a 5-mm peritumoral area, achieving promising predictive performance scores (AUC of 0.706 for validation and 0.837 for training).
  • Findings suggest that these radiomic features can serve as a non-invasive biomarker for predicting early recurrence of HCC, potentially leading to more personalized treatment approaches.

Article Abstract

Background: Hepatocellular carcinoma (HCC) is the sixth leading type of cancer worldwide. We aimed to develop a preoperative predictive model of the risk of early tumor recurrence after HCC treatment based on radiomic features of the peritumoral region and evaluate the performance of this model against postoperative pathology.

Method: Our model was developed using a retrospective analysis of imaging and clinicopathological data of 175 patients with an isolated HCC ≤5 cm in diameter; 117 patients were used for model training and 58 for model validation. The peritumoral area was delineated layer-by-layer for the arterial and portal vein phase on preoperative dynamic enhanced computed tomography images. The volume area of interest was expanded by 5 and 10 mm and the radiomic features of these areas extracted. Lasso was used to select the most stable features.

Results: The radiomic features of the 5-mm area were sufficient for prediction of early tumor recurrence, with an area under the curve (AUC) value of 0.706 for the validation set and 0.837 for the training set using combined images. The AUC of the model using clinicopathological information alone was 0.753 compared with 0.786 for the preoperative radiomics model (P >0.05).

Conclusions: Radiomic features of a 5-mm peritumoral region may provide a non-invasive biomarker for the preoperative prediction of the risk of early tumor recurrence for patients with a solitary HCC ≤5 cm in diameter. A fusion model that combines the radiomic features of the peritumoral region and postoperative pathology could contribute to individualized treatment of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650218PMC
http://dx.doi.org/10.3389/fonc.2022.1032115DOI Listing

Publication Analysis

Top Keywords

radiomic features
20
≤5 diameter
12
early tumor
12
tumor recurrence
12
peritumoral region
12
peritumoral area
8
hepatocellular carcinoma
8
model
8
risk early
8
features peritumoral
8

Similar Publications

Preoperative Computed Tomography Radiomics-Based Models for Predicting Microvascular Invasion of Intrahepatic Mass-Forming Cholangiocarcinoma.

J Comput Assist Tomogr

November 2024

From the Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China.

Objectives: The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models.

Materials And Methods: Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer.

View Article and Find Full Text PDF

Background: The expression level of Ki-67 in nasopharyngeal carcinoma (NPC) affects the prognosis and treatment options of patients. Our study developed and validated an MRI-based radiomics nomogram for preoperative evaluation of Ki-67 expression levels in nasopharyngeal carcinoma (NPC).

Methods: In all, 133 patients with pathologically-confirmed (post-operatively) NPC who underwent MRI examination in one of two medical centers.

View Article and Find Full Text PDF

Objectives: To evaluate the effectiveness of an MRI radiomics stacking ensemble learning model, which combines T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI) with deep learning-based automatic segmentation, for preoperative prediction of the prognosis of high-intensity focused ultrasound (HIFU) ablation of uterine fibroids.

Methods: This retrospective study collected data from 360 patients with uterine fibroids who underwent HIFU treatment. The dataset was sourced from Center A (training set: N = 240; internal test set: N = 60) and Center B (external test set: N = 60).

View Article and Find Full Text PDF

Neural Network and Logistic Regression Models Based on Ultrasound Radiomics and Clinical-Pathological Features to Predict Occult Level II Lymph Node Metastasis in Papillary Thyroid Carcinoma.

Acad Radiol

January 2025

Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (J-W.F., H.L.); Zhejiang Engineering Research Center of Cognitive Healthcare, Sir Run Run Shaw Hospital,School of Medicine, Zhejiang University, Hangzhou, China (H.L.); College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China (H.L.). Electronic address:

Rationale And Objectives: Papillary thyroid carcinoma (PTC) often metastasizes to lateral cervical lymph nodes, especially in level II. This study aims to develop predictive models to identify level II lymph node metastasis (LNM), guiding selective neck dissection (SND) to minimize unnecessary surgery and morbidity in low-risk patients.

Methods: A retrospective cohort of 313 PTC patients who underwent modified radical neck dissection (MRND) between October 2020 and January 2023 was analyzed.

View Article and Find Full Text PDF

Rationale And Objectives: This study aimed to develop and validate machine learning (ML) models utilizing positron emission tomography (PET)-habitat of the tumor and its peritumoral microenvironment to predict progression-free survival (PFS) in patients with clinical stage IA pure-solid non-small cell lung cancer (NSCLC).

Materials And Methods: 234 Patients who underwent lung resection for NSCLC from two hospitals were reviewed. Radiomic features were extracted from both intratumoral, peritumoral and habitat regions on PET.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!