Biogenic and thermogenic gas are two major contributors to gas hydrate formation. Methane hydrates from both origins may have critical impacts on the ecological properties of marine sediments. However, research on microbial diversity in thermogenic hydrate-containing sediments is limited. This study examined the prokaryotic diversity and distributions along a sediment core with a vertical distribution of thermogenic gas hydrates with different occurrences obtained from the Qiongdongnan Basin by Illumina sequencing of 16S rRNA genes as well as molecular and geochemical techniques. Here, we show that gas hydrate occurrence has substantial impacts on both microbial diversity and community composition. Compared to the hydrate-free zone, distinct microbiomes with significantly higher abundance and lower diversity were observed within the gas hydrate-containing layers. and Actinobacterota dominated the bacterial taxa in all collected samples, while archaeal communities shifted sharply along the vertical profile of sediment layers. A notable stratified distribution of anaerobic methanotrophs shaped by both geophysical and geochemical parameters was also determined. In addition, the hydrate-free zone hosted a large number of rare taxa that might perform a fermentative breakdown of proteins in the deep biosphere and probably respond to the hydrate formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640435 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.1032851 | DOI Listing |
Science
December 2024
Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
Methane, a greenhouse gas and energy source, is commonly studied using stable isotope signals as proxies for its formation processes. In subsurface environments, methane often exhibits equilibrium isotopic signals, but the equilibration process has never been demonstrated in the laboratory. We cocultured a hydrogenotrophic methanogen with an H-producing bacterium under conditions (55°C, 10 megapascals) simulating a methane-bearing subsurface.
View Article and Find Full Text PDFACS Omega
November 2024
School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
The genesis, occurrence, and accumulation of coalbed methane (CBM) are critical to the methane exploration and development. Combining the geological and geochemical data from CBM exploration wells and basin modeling, the genesis and accumulation characteristics of CBM in different regions and depths at the eastern margin of Ordos Basin were elucidated. Regional-scale gas content is controlled by depth and coal rank without turning depth occurs, but blocks perform variably.
View Article and Find Full Text PDFSci Rep
November 2024
School of Resources and Civil Engineering, Suzhou University, Suzhou, 234000, China.
The objective of this work is to investigate the implications of geological influence factors on gas content and geochemical characteristics of deep-buried (> 800 m) coalbed methane (CBM) reservoirs. Results show that bituminous coal accounts for the majority, which exhibits similar maturity but differ in maceral and chemical constituents. CBM reservoirs show low porosity, low permeability and moderate temperature, with thickness of 0.
View Article and Find Full Text PDFMar Pollut Bull
November 2024
Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada. Electronic address:
Permanently cold deep-sea sediments (2500-3500 m water depth) with and without indications of thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and potential of cold-adapted aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep sediments removed aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) more readily. Naphtha-driven aerobic respiration was more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that responded less rapidly.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany. Electronic address:
Increasing energy expenditure in brown adipose (BAT) tissue by cold-induced lipolysis is discussed as a potential strategy to counteract imbalanced lipid homeostasis caused through unhealthy lifestyle and cardiometabolic disease. Yet, it is largely unclear how liberated fatty acids (FA) are metabolized. We investigated the liver and BAT lipidome of mice housed for 1 week at thermoneutrality, 23 °C and 4 °C using quantitative mass spectrometry-based lipidomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!