We wanted to assess if "Explainable AI" in the form of extreme gradient boosting (XGBoost) could outperform traditional logistic regression in predicting myocardial infarction (MI) in a large cohort. Two machine learning methods, XGBoost and logistic regression, were compared in predicting risk of MI. The UK Biobank is a population-based prospective cohort including 502 506 volunteers with active consent, aged 40 to 69 years at recruitment from 2006 to 2010. These subjects were followed until end of 2019 and the primary outcome was myocardial infarction. Both models were trained using 90% of the cohort. The remaining 10% was used as a test set. Both models were equally precise, but the regression model classified more of the healthy class correctly. XGBoost was more accurate in identifying individuals who later suffered a myocardial infarction. Receiver operator characteristic (ROC) scores are class size invariant. In this metric XGBoost outperformed the logistic regression model, with ROC scores of 0.86 (accuracy 0.75 (CI ±0.00379) and 0.77 (accuracy 0.77 (CI ± 0.00369) respectively. Secondly, we demonstrate how SHAPley values can be used to visualize and interpret the predictions made by XGBoost models, both for the cohort test set and for individuals. The XGBoost machine learning model shows very promising results in evaluating risk of MI in a large and diverse population. This model can be used, and visualized, both for individual assessments and in larger cohorts. The predictions made by the XGBoost models, points toward a future where "Explainable AI" may help to bridge the gap between medicine and data science.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647306 | PMC |
http://dx.doi.org/10.1177/11795468221133611 | DOI Listing |
Am J Ther
January 2025
Division of Cardiology, Ellis Hospital, New York, NY.
Background: In patients with coronary artery disease (CAD) and/or myocardial infarction (MI), anemia is associated with an increased risk of adverse cardiovascular (CV) outcomes. Transfusion goals in such patients remain unclear.
Study Question: A meta-analysis of the available randomized controlled trials (RCTs) was conducted comparing restrictive and liberal transfusion strategies in patients with symptomatic CAD/MI.
Herz
January 2025
Herzzentrum Leipzig, Universitätsklinik für Kardiologie, Strümpellstr. 39, 04289, Leipzig, Deutschland.
Coronary artery disease (CAD) is the leading cause of death worldwide. Acute coronary syndrome (ACS) encompasses a spectrum of diagnoses ranging from unstable angina pectoris to myocardial infarction with and without ST-segment elevation and frequently presents as the first clinical manifestation. It is crucial in this scenario to perform a timely and comprehensive assessment of patients by evaluating the clinical presentation, electrocardiogram and laboratory diagnostics using highly sensitivity cardiac troponin in order to initiate a timely and risk-adapted continuing treatment with immediate or early invasive coronary angiography.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Department of Cardiovascular & Thoracic Surgery, Sandra Atlas Bass Heart Hospital at North Shore University Hospital, Northwell Health, 300 Community Drive, 1 DSU, Manhasset, NY, 11030, USA.
Purpose Of Review: This article discusses a tailored approach to managing cardiogenic shock and temporary mechanical circulatory support (tMCS). We also outline specific mobilization strategies for patients with different tMCS devices and configurations, which can be enabled by this tailored approach to cardiogenic shock management.
Recent Findings: Safe and effective mobilization of patients with cardiogenic shock receiving tMCS can be accomplished.
Cells
January 2025
Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.
Eur Heart J
January 2025
Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
Cardiogenic shock represents a critical condition in which the heart is unable to maintain adequate circulation leading to insufficient tissue perfusion and end-organ failure. Temporary mechanical circulatory support offers the potential to stabilize patients, provide a bridge-to-recovery, provide a bridge-to-decision, or facilitate definitive heart replacement therapies. Although randomized controlled trials have been performed in infarct-related cardiogenic shock and refractory cardiac arrest, the optimal timing, appropriate patient selection, and optimal implementation of these devices remain complex and predominantly based on observational data and expert consensus, especially in non-ischaemic shock.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!