Background: Preterm neonates, particularly extremely preterm, are susceptible to respiratory distress syndrome (RDS) due to surfactant deficiency. Single nucleotide polymorphisms (SNPs) in the antioxidant enzymes influence the balance between antioxidant and oxidative stress molecules.

Objectives: To ascertain the role of SNPs of antioxidant enzymes and oxidative stress biomarkers in preterm neonates with RDS.

Design: Observational, cross-sectional study.

Methods: Preterm neonates diagnosed with RDS receiving external surfactant within 24 hours were considered as the cases and those without RDS were the control group. Umbilical cord blood and peripheral blood samples before administering surfactant (day 1), and on days 2 and 3 were collected. Plasma malondialdehyde, 8-hydroxy-2-deoxy guanosine (8-OH-dG), advanced oxidation protein products (AOPP), total antioxidant capacity (TAC), visfatin, reduced glutathione, and chaperonin 60 were evaluated using enzyme-linked immunosorbent assay. SNPs in manganese superoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/Zn SOD), glutathione peroxidase (GPX1 and GPX3), catalase (CAT), glutathione S-transferase (GSTP1) were evaluated using real-time polymerase-chain-reaction. The receiver-operating characteristics curve was used for predicting the accuracy of biomarkers using the area under the curve (AUC) and 95% confidence intervals (95% CI).

Results: GSTP1, MnSOD, and eNOS (rs1799983) SNPs were observed to significantly influence the oxidative biomarker concentrations in the entire study population. SNPs in , , and (rs1799983) were significantly associated with differences in oxidative stress biomarkers. (rs4880) significantly increased the risk of pulmonary complications in neonates with RDS. DNA damage product (8-OH-dG) concentrations before surfactant administration has the best predictive accuracy (AUC: 0.8; 95% CI: 0.7-1; = .001) for pulmonary complications with a cut-off value of 5008.8 pg/mL. TAC concentrations are significantly greater on day 2 and day 3 amongst neonates receiving surfactant compared to the control group. AOPP in the umbilical cord blood was observed to significantly predict the severity of RDS (AUC: 0.8; 95% CI: 0.6-1; = .01) with an optimal cut-off value of 88.78 µmol/L.

Conclusion: We observed that SNPs in and significantly influence the production of oxidative stress biomarkers in preterm neonates. Baseline 8-OH-dG concentrations best predict the risk of pulmonary complications and AOPP concentrations in the umbilical cord blood predict the risk of RDS severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663612PMC
http://dx.doi.org/10.1177/11772719221137608DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
preterm neonates
20
antioxidant enzymes
12
stress biomarkers
12
umbilical cord
12
cord blood
12
auc 95%
12
pulmonary complications
12
respiratory distress
8
distress syndrome
8

Similar Publications

Background: Coronary artery disease (CAD) has become a dominant economic and health burden worldwide, and the role of autophagy in CAD requires further clarification. In this study, we comprehensively revealed the association between autophagy flux and CAD from multiple hierarchies. We explored autophagy-associated long noncoding RNA (lncRNA) and the mechanisms underlying oxidative stress-induced human coronary artery endothelial cells (HCAECs) injury.

View Article and Find Full Text PDF

Background/aim: In a tongue-submandibular lymph node (SLN) metastasis model, the cystine/glutamate transporter solute carrier family 7, member 11 (Slc7a11), also known as xCT, was found to increase in lymphatic endothelial cells (LECs) within SLNs prior to melanoma cell metastasis. However, the precise mechanism by which xCT influences LECs remains unclear. This study aimed to explore the role of xCT in primary cultured LECs.

View Article and Find Full Text PDF

Investigating the Effect of Capric Acid on Antibiotic-Induced Autism-Like Behavior in Rodents.

Dev Neurobiol

January 2025

Neuropharmacology Research Laboratory, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.

Owing to the high prevalence of gastrointestinal dysfunction in patients, the gut-brain axis is considered to play a vital role in neurodevelopment diseases. Recent pieces of evidence have pointed to the usage of antibiotics at an early developmental stage to be a causative factor in autism due to its ability to induce critical changes in the gut microbiota. The purpose of the study is to determine the neuroprotective effect of capric acid (CA) on autism in antibiotic-induced gut dysbiosis in rodents.

View Article and Find Full Text PDF

Introduction: Persistent postural-perceptual dizziness (PPPD) is the most prevalent chronic functional dizziness in the clinic. Unsteadiness, dizziness, or non-spinning vertigo are the main symptoms of PPPD, and they are typically aggravated by upright posture, active or passive movement, and visual stimulation. The pathogenesis of PPPD remains incompletely understood, and it cannot be attributed to any specific anatomical defect within the vestibular system.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!