Synaptic plasticity in two cell types of central amygdala for regulation of emotion and pain.

Front Cell Neurosci

Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.

Published: October 2022

The amygdala is a critical brain site for regulation of emotion-associated behaviors such as pain and anxiety. Recent studies suggest that differential cell types and synaptic circuits within the amygdala complex mediate interacting and opposing effects on emotion and pain. However, the underlying cellular and circuit mechanisms are poorly understood at present. Here we used optogenetics combined with electrophysiological analysis of synaptic inputs to investigate pain-induced synaptic plasticity within the amygdala circuits in rats. We found that 50% of the cell population in the lateral division of the central nucleus of the amygdala (CeAl) received glutamate inputs from both basolateral amygdala (BLA) and from the parabrachial nucleus (PBN), and 39% of the remaining CeAl cells received glutamate inputs only from PBN. Inflammatory pain lasting 3 days, which induced anxiety, produced sensitization in synaptic activities of the BLA-CeAl-medial division of CeA (CeAm) pathway primarily through a postsynaptic mechanism. Moreover, in CeAl cells receiving only PBN inputs, pain significantly augmented the synaptic strength of the PBN inputs. In contrast, in CeAl cells receiving both BLA and PBN inputs, pain selectively increased the synaptic strength of BLA inputs, but not the PBN inputs. Electrophysiological analysis of synaptic currents showed that the increased synaptic strength in both cases involved a postsynaptic mechanism. These findings reveal two main populations of CeAl cells that have differential profiles of synaptic inputs and show distinct plasticity in their inputs in response to anxiety-associated pain, suggesting that the specific input plasticity in the two populations of CeAl cells may encode a different role in amygdala regulation of pain and emotion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643269PMC
http://dx.doi.org/10.3389/fncel.2022.997360DOI Listing

Publication Analysis

Top Keywords

ceal cells
20
pbn inputs
16
synaptic strength
12
synaptic
10
inputs
10
synaptic plasticity
8
cell types
8
amygdala regulation
8
pain
8
emotion pain
8

Similar Publications

Failure to appropriately predict and titrate reactivity to threat is a core feature of fear and anxiety-related disorders and is common following early life adversity (ELA). A population of neurons in the lateral central amygdala (CeAL) expressing corticotropin releasing factor (CRF) have been proposed to be key in processing threat of different intensities to mediate active fear expression. Here, we use in vivo fiber photometry to show that ELA results in sex-specific changes in the activity of CeAL CRF+ neurons, yielding divergent mechanisms underlying the augmented startle in ELA mice, a translationally relevant behavior indicative of heightened threat reactivity and hypervigilance.

View Article and Find Full Text PDF

The amygdala is a critical brain site for regulation of emotion-associated behaviors such as pain and anxiety. Recent studies suggest that differential cell types and synaptic circuits within the amygdala complex mediate interacting and opposing effects on emotion and pain. However, the underlying cellular and circuit mechanisms are poorly understood at present.

View Article and Find Full Text PDF

The use of batch and upflow anaerobic reactors filled with polyurethane foam for pure glycerol fermentation was evaluated. The best reactor operational conditions to obtain high yield and productivity of 1,3-propanediol (1,3-PDO) as the main product and the role of the polyurethane foam in the growth and retention of suspended and attached biomass in the reactors were investigated. In the experiment at 30 °C with a batch reactor (700 mL), biomass growth was mostly as immobilized attached cells, and the achieved 1,3-PDO yield was up to 0.

View Article and Find Full Text PDF

Protective Effects of Ursolic Acid Against Cytotoxicity Induced by Corticosterone: Role of Protein Kinases.

Neurochem Res

November 2019

Department of Biochemistry, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário, Florianópolis, Brazil.

Neuronal hippocampal death can be induced by exacerbated levels of cortisol, a condition usually observed in patients with Major depressive disorder (MDD). Previous in vitro and in vivo studies showed that ursolic acid (UA) elicits antidepressant and neuroprotective properties. However, the protective effects of UA against glucocorticoid-induced cytotoxicity have never been addressed.

View Article and Find Full Text PDF

Characterization of McDonald's intermediate part of the Central nucleus of the amygdala in the rat.

J Comp Neurol

October 2018

EA481, UFR Sciences Médicales et Pharmaceutiques, 19 rue Ambroise Paré, Université Bourgogne Franche-Comté, Besançon cedex, 25030, France.

The actual organization of the central nucleus of the amygdala (CEA) in the rat is mostly based on cytoarchitecture and the distribution of several cell types, as described by McDonald in 1982. Four divisions were identified by this author. However, since this original work, one of these divisions, the intermediate part, has not been consistently recognized based on Nissl-stained material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!