Several materials have or are currently being investigated for nuclear waste sequestration applications, including crystalline ceramic oxides, glasses, and glass-ceramic composites. Rare-earth phosphates have been investigated extensively for this application owing to the range of structures that the hydrous or anhydrous versions can adopt as well as the fact that naturally occurring rare-earth phosphates have been found to contain U or Th. The purpose of this mini-review is to discuss (generally) the properties that must be considered when identifying nuclear wasteform materials and (more specifically) the structure and properties of rare-earth phosphates with special attention being given to the resistance of these materials to radiation-induced structure damage. The last section of the mini-review contains an introduction to the development of glass-ceramic composite materials that contain rare-earth phosphate crystallites dispersed in a glass matrix. These composite materials have been suggested to be superior to using just glass or ceramic materials for nuclear waste sequestration applications owing to improved waste loading capabilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648117PMC
http://dx.doi.org/10.1021/acsomega.2c03271DOI Listing

Publication Analysis

Top Keywords

nuclear waste
12
waste sequestration
12
sequestration applications
12
rare-earth phosphates
12
rare-earth phosphate
8
materials nuclear
8
composite materials
8
materials
7
review rare-earth
4
phosphate materials
4

Similar Publications

Accurate Force Field for Carbon Dioxide-Silica Interactions Based on Density Functional Theory.

J Phys Chem B

January 2025

Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States.

Fluid-silica interfaces are ubiquitous in chemistry, occurring in both natural geochemical environments and practical applications ranging from separations to catalysis. Simulations of these interfaces have been, and continue to be, a significant avenue for understanding their behavior. A constraining factor, however, is the availability of accurate force fields.

View Article and Find Full Text PDF

The systemic evolutionary theory of the origin of cancer (SETOC): an update.

Mol Med

January 2025

Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy.

The Systemic Evolutionary Theory of the Origin of Cancer (SETOC) is a recently proposed theory founded on two primary principles: the cooperative and endosymbiotic process of cell evolution as described by Lynn Margulis, and the integration of complex systems operating in eukaryotic cells, which is a core concept in systems biology. The SETOC proposes that malignant transformation occurs when cells undergo a continuous adaptation process in response to long-term injuries, leading to tissue remodeling, chronic inflammation, fibrosis, and ultimately cancer. This process involves a maladaptive response, wherein the 'endosymbiotic contract' between the nuclear-cytoplasmic system (derived from the primordial archaeal cell) and the mitochondrial system (derived from the primordial α-proteobacterium) gradually breaks down.

View Article and Find Full Text PDF

N,O-Heterocyclic ligands such as 2,9-diamide-1,10-phenanthroline dicarboxamide (DAPhen) and bis-lactam-1,10-phenanthroline (BLPhen) exhibit excellent separation performance for Am(III) and Eu(III) in high-level liquid waste. However, DAPhen-based ligands show poor extraction capacity, and BLPhen ligands suffer from decomposition in acidic solutions, which hinders their application in practical separation processes. To develop ligands with superior performance, two new completely preorganized and highly stabilized bis-lactam-1,10-phenanthroline (BLPhen) ligands with varying alkyl chain lengths were synthesized, demonstrating exceptional extraction and separation of Am(III) from Eu(III) with maximum separation factors of 68 and 53, respectively.

View Article and Find Full Text PDF

In clearance measurements involving a single material type, a conversion factor was applied to convert measurement results to activity based on an assumed uniform density. However, this factor has been found to underestimate activity in material mixtures. In this study, we proposed a method to identify the location with the lowest detection sensitivity (minimum location) in a mixture and evaluated its applicability to the conversion factor.

View Article and Find Full Text PDF

The highly valued oil of Mill. (Rosaceae), widely used in high perfumery, cosmetics, and other spheres of human life, obliges us to know and study the safety profile of the product obtained from the water-steam distillation of fresh rose petals. The genotoxicity of the essential oil (EsO) has not been thoroughly studied despite its wide range of applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!