In many regions of the world, sparse data on key economic outcomes inhibit the development, targeting and evaluation of public policy. We demonstrate how advancements in satellite imagery and machine learning (ML) can help ameliorate these data and inference challenges. In the context of an expansion of the electrical grid across Uganda, we show how a combination of satellite imagery and computer vision can be used to develop local-level livelihood measurements appropriate for inferring the causal impact of electricity access on livelihoods. We then show how ML-based inference techniques deliver more reliable estimates of the causal impact of electrification than traditional alternatives when applied to these data. We estimate that grid access improves village-level asset wealth in rural Uganda by up to 0.15 standard deviations, more than doubling the growth rate during our study period relative to untreated areas. Our results provide country-scale evidence on the impact of grid-based infrastructure investment and our methods provide a low-cost, generalizable approach to future policy evaluation in data-sparse environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-022-05322-8 | DOI Listing |
Soft Matter
January 2025
School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology and the Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, USA.
Background: The aim of this study was to examine the potential added value of including neuropsychiatric symptoms (NPS) in machine learning (ML) models, along with demographic features and Alzheimer's disease (AD) biomarkers, to predict decline or non-decline in global and domain-specific cognitive scores among community-dwelling older adults.
Objective: To evaluate the impact of adding NPS to AD biomarkers on ML model accuracy in predicting cognitive decline among older adults.
Methods: The study was conducted in the setting of the Mayo Clinic Study of Aging, including participants aged ≥ 50 years with information on demographics (i.
Endocr Metab Immune Disord Drug Targets
January 2025
Department of Orthopaedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
Background: Osteoporosis (OP) is a skeletal condition characterized by increased susceptibility to fractures. Programmed cell death (PCD) is the orderly process of cells ending their own life that has not been thoroughly explored in relation to OP.
Objective: This study is to investigate PCD-related genes in OP, shedding light on potential mechanisms underlying the disease.
EClinicalMedicine
January 2025
Medical Laboratory CSD, Kyiv 02000, Ukraine.
Background: Although the number of studies reporting war-induced effects on the health of the Ukrainian population has been growing, there are still little data on assessing patients with type 2 diabetes (T2D) during the war. This study aimed to evaluate the impact of war on T2D patients' health to define key risk factors promoting disease progression.
Methods: A survey covering various aspects of T2D patients' experience and glycemic control data was conducted from June 2022 to February 2024.
Cureus
December 2024
Department of Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA.
This paper investigates the potential of artificial intelligence (AI) and machine learning (ML) to enhance the differentiation of cystic lesions in the sellar region, such as pituitary adenomas, Rathke cleft cysts (RCCs) and craniopharyngiomas (CP), through the use of advanced neuroimaging techniques, particularly magnetic resonance imaging (MRI). The goal is to explore how AI-driven models, including convolutional neural networks (CNNs), deep learning, and ensemble methods, can overcome the limitations of traditional diagnostic approaches, providing more accurate and early differentiation of these lesions. The review incorporates findings from critical studies, such as using the Open Access Series of Imaging Studies (OASIS) dataset (Kaggle, San Francisco, USA) for MRI-based brain research, highlighting the significance of statistical rigor and automated segmentation in developing reliable AI models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!