When a colloidal suspension flows in a constriction, particles deposit and are able to clog it entirely, this fouling process being followed by the accumulation of particles. The knowledge of the dynamics of formation of such a dense particle assembly behind the clog head and its structural features is of primary importance in many industrial and environmental processes and especially during filtration. While most studies concentrate on the conditions under which pore clogging occurs, , the pore narrowing up to its complete obstruction, this paper focuses on the accumulation of particles that follows pore obstruction. We determine the relative contribution of the confinement dimensions, the ionic strength and the flow conditions on the permeability and particle volume fraction of the resultant accumulation. In high confinement the irreversible deposition of particles on the channel surfaces controls the structure of the accumulation and the flow through it, irrespective of the other conditions, leading to a Darcy flow. Finally, we show that contrarily to the clog head, in which there is cohesion between particles, those in the subsequent accumulation are held together by the fluid and form a dense suspension of repulsive hard spheres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2sm00419d | DOI Listing |
Pulmonology
December 2025
Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.
Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.
Study Design And Methods: Randomized single-blind crossover trial including COPD patients.
Pulmonology
December 2025
Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei tintori, Monza, Italy.
Background: Non-invasive helmet respiratory support is suitable for several clinical conditions. Continuous-flow helmet CPAP systems equipped with HEPA filters have become popular during the recent Coronavirus pandemic. However, HEPA filters generate an overpressure above the set PEEP.
View Article and Find Full Text PDFPulmonology
December 2025
Alma Mater Studiorum, Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Nasal high flow (NHF) therapy is an established form of non invasive respiratory support used in acute and chronic care. Recently, a new high flow nasal cannula with asymmetric prongs was approved for clinical use. The clinical benefits of the new cannula have not yet been defined and no evidence are available on the use of asymmetric NHF support in patient with Chronic Obstructive Pulmonary Disease (COPD).
View Article and Find Full Text PDFJ Sports Sci
January 2025
Physical Activity, Sport and Exercise (PHASE) Research Group, School of Allied Health (Exercise Science), Murdoch University, Perth, Australia.
This study examined internal, external training loads, internal:external ratios, and aerobic adaptations for acute and short-term chronic repeated-sprint training (RST) with blood flow restriction (BFR). Using randomised crossover (Experiment A) and between-subject (Experiment B) designs, 15 and 24 semi-professional Australian footballers completed two and nine RST sessions, respectively. Sessions comprised three sets of 5-7 × 5-second sprints and 25 seconds recovery, with continuous BFR (45% arterial occlusion pressure) or without (Non-BFR).
View Article and Find Full Text PDFInt J Cardiovasc Imaging
January 2025
Cardiology, Endeavor NorthShore Cardiovascular Institute, Evanston, IL, USA.
This study aims to evaluate the implementation of concomitant CAD assessment on pre-TAVI (transcatheter aortic valve implantation) planning CTA (CT angiography) aided by CT-FFR (CT-fractional flow reserve) [The CT2TAVI protocol] and investigates the incremental value of CT-FFR to coronary CT angiography (CCTA) alone in the evaluation of patients undergoing CT2TAVI. This is a prospective observational real-world cohort study at an academic health system on consecutive patients who underwent CTA for TAVI planning from 1/2021 to 6/2022. This represented a transition period in our health system, from not formally reporting CAD on pre-TAVI planning CTA (Group A) to routinely reporting CAD on pre-TAVI CTA (Group B; CT2TAVI protocol).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!