AI Article Synopsis

Article Abstract

Biofouling roots damage to membrane bioreactors (MBRs), such as physical, functional and organisational changes and even therefore clogging of the membrane pores and successive microbial degradation. Further, it blocks the pores, results into a biomass cake and in due course reduces the membrane flux and leads to an increase in the operational costs. MBR fouling contributed to the rise in transmembrane pressure (TMP) and decrease in permeate flux (in case of constant pressure operation mode). Chemical surfactants adopted for the cleaning of membrane surfaces have certain disadvantages such as toxicity manifestations, damage to the membranes and high CMC concentrations. Biosurfactant surfactants have attained increasing interest due to their low toxicity, biodegradability, stability to extreme environmental conditions such as temperatures, pH and tolerance to salinity. The biosurfactants trapped the foulants via micelle formation, which distresses hydrophobic interactions amongst bacteria and the surface. Rhamnolipids as an anionic biosurfactant pose a significant interfacial potential and have affinity to bind organic matter. The present review discusses the problem of biofouling in MBRs, type and interactions of foulants involved and also highlights the mechanisms of biosurfactant cleaning, effect of different parameters, effect of concentration, TMP, flux recovery, permeability, mitigation practices and challenges.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04261-4DOI Listing

Publication Analysis

Top Keywords

membrane bioreactors
8
biofouling membrane
4
bioreactors mechanism
4
mechanism interactions
4
interactions mitigation
4
mitigation biosurfactants
4
biosurfactants biofouling
4
biofouling roots
4
roots damage
4
membrane
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!