Se(IV) removal using nanoscale zero-valent iron (nZVI) has been extensively studied. Still, the synergistic removal of Se(IV) by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) has not been reported. In this study, nZVI/rGO was successfully synthesized for Se(IV) removal from wastewater. The effects of different environmental conditions (load ratio, dosage, initial pH) on Se(IV) removal by nZVI/rGO were investigated. When the load ratio is 10%, the dosage is 0.3 g/L, the initial pH is 3, and the removal rate is 99%. The adsorption isotherm and kinetics accorded with the Langmuir isotherm and first-order kinetics models (R > 0.99). The fitted maximum adsorption capacity reached up to 173.53 mg/g. NZVI/rGo and Se(IV) is a spontaneous endothermic reaction (△G < 0, △H > 0) and is characterized by EDS, XRD, and XPS before and after the reaction, to further clarify the reaction mechanism. The XPS narrow spectrum analysis suggested that Se(IV) was reduced to elemental selenium (Se(0)), while the intermediate Fe(II) was oxidized to form hydroxide precipitation. Therefore, nZVI/rGO was favored for Se-contaminated wastewater remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24226-8 | DOI Listing |
Chemosphere
February 2025
University of Granada, Department of Microbiology, Granada, Spain. Electronic address:
The immobilization of microorganisms in polymeric hydrogel has gained attention as a potential method for applications in various fields, offering several advantages over traditional cell free-living technologies. The present study aims to compare the efficiency of selenium (Se) bioremediation and biorecovery by two different fungal types, both in their free and immobilized forms using alginate hydrogels. Our results demonstrated an improvement in the amount of Se(IV) removed from the hydrogels of Aspergillus ochraceus (∼97%) and Rhodotorula mucilaginosa (∼43%) compared to that of the planktonic cultures (∼57% and ∼9-17%).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, China. Electronic address:
The removal of selenite (Se(IV)) and cadmium (Cd(II)) from low-carbon wastewater presents significant challenges. However, the addition of external organic carbon sources is limited in application due to the high cost and potential for secondary pollution. This study introduced a "hibernation-like microbial survival strategy", enabling efficient removal of Se(IV) and Cd(II) in sulfur autotrophic reactor, with S acting as the electron donor.
View Article and Find Full Text PDFInt J Phytoremediation
November 2024
Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, India.
Environ Res
January 2025
Innovation Team of Heavy Metal Ecotoxicity and Pollution Remediation, Ministry of Agriculture and Rural Affairs (MARA), Agro-Environmental Protection Institute, MARA, Tianjin, 300191, China; Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, Agro‒Environmental Protection Institute, MARA, Tianjin, 300191, China. Electronic address:
Decreasing cadmium (Cd) accumulation in wheat grain is significant for human health. This study compared the effect of soil applied different selenium (Se) species on Cd accumulation in wheat. In Cd-contaminated soil, the applications of inorganic Se species, organic Se species, and selenium nanoparticles (SeNPs) had little effect on physicochemical properties, available Cd content, and Cd fractions in soil, but changed the β diversity and relative abundance of bacteria at genus level.
View Article and Find Full Text PDFWater Res
January 2025
Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada; Institute for Water Innovation, University of Toronto, 55 St George St., Toronto, ON, M5S 1A4, Canada; Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, ON, M5S 3G9, Canada. Electronic address:
Selenium (Se), released from mining, power generation, and agriculture, is an environmentally and ecologically concerning contaminant due to its toxicity at elevated concentrations. Se oxyanions are highly soluble and mobile in aquatic ecosystems, and have a strong tendency to bioaccumulate and biomagnify, leading to acute and chronic toxicity in animals and humans. Photocatalysis presents a promising sustainable Se treatment solution and has successfully reduced and removed Se from mining-influenced matrices using UV-powered slurry photoreactor systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!