High-quality Japanese flounder genome aids in identifying stress-related genes using gene coexpression network.

Sci Data

Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao, 266071, China.

Published: November 2022

The Japanese flounder is one of the most economically important marine flatfish. However, due to the increased frequency of extreme weather events and high-density industrial farming, an increasing number of environmental stresses have become severe threats to the healthy development of the Japanese flounder culture industry. Herein, we produced a high-quality chromosome-scale Japanese flounder genome using PacBio Circular Consensus Sequencing technologies. The assembled Japanese flounder genome spanned 588.22 Mb with a contig N50 size of 24.35 Mb. In total, 105.89 Mb of repetitive sequences and 22,565 protein-coding genes were identified by genome annotation. In addition, 67 candidate genes responding to distinct stresses were identified by gene coexpression network analysis based on 16 published stress-related RNA-seq datasets encompassing 198 samples. A high-quality chromosome-scale Japanese flounder genome and candidate stress-related gene set will not only serve as key resources for genomics studies and further research on the underlying stress responsive molecular mechanisms in Japanese flounder but will also advance the progress of genetic improvement and comprehensive stress-resistant molecular breeding of Japanese flounder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668919PMC
http://dx.doi.org/10.1038/s41597-022-01821-5DOI Listing

Publication Analysis

Top Keywords

japanese flounder
32
flounder genome
16
flounder
8
gene coexpression
8
coexpression network
8
high-quality chromosome-scale
8
chromosome-scale japanese
8
japanese
7
genome
5
high-quality japanese
4

Similar Publications

Effects of nitrate (NO) stress-induced exacerbated cadmium (Cd) toxicity on the inflammatory response, oxidative defense, and apoptosis in juvenile Japanese flounder (Paralichthys olivaceus).

J Environ Sci (China)

June 2025

Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China. Electronic address:

Due to the discharge of industrial wastewater, urban domestic sewage, and intensive marine aquaculture tailwater, nitrate (NO) pollution has emerged as a significant issue in offshore waters. Nitrate pollution affects aquatic life and may interact with other pollutants, leading to comprehensive toxicity. Cadmium (Cd) is the most widespread metal contaminant, adversely affecting aquatic life in the coastal waters of China.

View Article and Find Full Text PDF

Synchronously Mature Intersex Japanese Flounder (): A Rare Case.

Animals (Basel)

October 2024

China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China.

Japanese flounder is usually gonochoristic, with gonads that are either testes or ovaries. Here, we report an unusual case of hermaphroditism in Japanese flounder captured from the Bohai Sea. In the intersex flounder, the membrane of the upper ovary was closely connected to the abdominal muscles and internal organs, and the eggs filled the entire abdomen.

View Article and Find Full Text PDF

Identification, expression, and function analysis of Rbpms2 splicing variants in Japanese flounder gonad.

Gen Comp Endocrinol

December 2024

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

Rbpms2, an RNA-binding protein with multiple splicing (Rbpms), can interact with RNAs to involve oocyte development, thereby influencing female sex differentiation in vertebrates. Here, two splicing variants of the Rbpms2 gene from Japanese flounder (Paralichthys olivaceus) were identified, namely Rbpms2.1 and Rbpms2.

View Article and Find Full Text PDF

Identification and Functional Analysis of Ras-Related Associated with Diabetes Gene () in -Resistant Individuals of Japanese Flounder ().

Int J Mol Sci

October 2024

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.

Ras-related associated with diabetes (RRAD) is a member of the Ras GTPase superfamily that plays a role in several cellular functions, such as cell proliferation and differentiation. In particular, the superfamily acts as an NF-κB signaling pathway inhibitor and calcium regulator to participate in the immune response pathway. A recent transcriptome study revealed that was expressed in the spleen of disease-resistant Japanese flounder () individuals compared with disease-susceptible individuals, and the results were also verified by qPCR.

View Article and Find Full Text PDF

As an important CXC chemokine, CXCL8 plays pleiotropic roles in immunological response. In teleost, CXCL8 is involved in cell migration and bacterial invasion. However, the immune antibacterial function of CXCL8 in Japanese flounder (Paralichthys olivaceus) (PoCXCL8) is largely scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!