Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667854 | PMC |
http://dx.doi.org/10.1038/s41467-022-33713-y | DOI Listing |
Cell Mol Gastroenterol Hepatol
January 2025
Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA. Electronic address:
Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, triggered a global pandemic with severe medical and socioeconomic consequences. While fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases.
View Article and Find Full Text PDFSci Rep
January 2025
Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
COVID-19 has proved to be a global health crisis during the pandemic, and the emerging JN.1 variant is a potential threat. Therefore, finding alternative antivirals is of utmost priority.
View Article and Find Full Text PDFSARS-CoV-2 variants are mainly defined by mutations in their spike. It is therefore critical to understand how the evolutionary trajectories of spike affect virus phenotypes. So far, it has been challenging to comprehensively compare the many spikes that emerged during the pandemic in a single experimental platform.
View Article and Find Full Text PDFBackground: The global outbreak of COVID-19, caused by the SARS-CoV-2 virus, has been linked to long-term neurological complications, including Alzheimer's disease (AD) among seniors. However, the precise genetic impact of COVID-19 on long-term AD development remains unclear.
Method: This study leveraged genome-wide association study (GWAS) data and genotype data to explore the genetic correlation between AD and various COVID-19 phenotypes across European ancestry (EA) and African ancestry (AA).
Alzheimers Dement
December 2024
Institute of Neurosciences, L'Hospitalet de Llobregat, Barcelona, Spain.
Background: The increased vulnerability of Alzheimer's disease patients to severe SARS-CoV-2 infection raises crucial concerns, especially with the potential transition of the COVID-19 pandemic to an endemic state. Given the rising prevalence of Alzheimer's in an aging world-wide population, elucidating whether SARS-CoV-2 infection may induce or accelerate neurodegeneration becomes imperative.
Method: To investigate the neurodegenerative effects of SARS-CoV-2 infection, we generated brain organoids using human induced pluripotent stem lines from one non-demented control, one with sporadic Alzheimer's, and one with familial Alzheimer's.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!