Idiopathic hypogonadotropic hypogonadism (IHH) is a rare endocrine disease characterized by gonadal dysplasia. According to whether the sense of smell is affected, this disorder is classified into Kallmann syndrome (KS) and normosmic isolated hypogonadotropic hypogonadism (nIHH). In this study, we reported a case of nIHH patient and explored the pathogenic mechanism of FGFR1 in nIHH. A FGFR1 variant (c.2008G>A, p.E670K) and a CEP290 variant (c.964G>A, p.D322N) were detected by the whole exome sequencing in this nIHH patient. Bioinformatic analysis revealed that this FGFR1 variant (c.2008G>A) causes structural perturbations in TK2 domain demonstrating that this variant result in FGFR1 loss-of-function and abnormal signaling. The identification of an additional CEP290 variant (c.964G>A) indicated that CEP290 might play a potential role in developmental abnormalities and inhibition of GnRH neuron release. A protein interaction network analysis showed that CEP290 was predicted to interact with FGFR1. In summary, our study identified the potential pathogenic mechanism(s) of the novel FGFR1 variant and indicated that CEP290 might play a role in the GnRH neuron migration route. Our findings expand the mutation spectrum of FGFR1 and CEP290 and provide a reference for clinical diagnosis and treatment of IHH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.16288/j.yczz.22-196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!