Purpose: The green synthesis of nanoparticles has recently opened up a new route in material production. The aim of this study was to evaluate the effect of nanohydroxyapatite (nHA) synthesized from Elaeagnus angustifolia (EA) extract in polycaprolactone (PCL) nanofibers (PCL/nHAEA) to odontogenic differentiation of dental pulp stem cells (DPSCs) and their potential applications for dentin tissue engineering.

Methods: Green synthesis of nHA via EA extract (nHAEA) was done by the sol-gel technique. Then electrospun nanocomposites containing of PCL blended with nHA (P/nHA) and nHAEA (P/nHAEA) were fabricated, and the characterization was evaluated via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and the contact angle. The morphology of nanofibers and the cell adhesion capacity of DPSCs on nanofibers were evaluated using SEM. Cytocompatibility was assessed by MTT. Osteo/odontogenic differentiation ability of the nanocomposites were assessed using alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and quantitative real-time polymerase chain reaction (qPCR) technique.

Results: Viability and adhesion capacity of DPSCs were higher on P/nHAEA nanofibers than PCL and P/nHA nanofibers. ARS assay, ALP activity, and qPCR analysis findings confirmed that the nHAEA blended nanofibrous scaffolds substantially increased osteo/odontogenic differentiation of DPSCs.

Conclusion: PCL/nHAEA nanocomposites had a noticeable effect on the odontogenic differentiation of DPSCs and may help to improve cell-based dentin regeneration therapies in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9670388PMC
http://dx.doi.org/10.1186/s12903-022-02527-1DOI Listing

Publication Analysis

Top Keywords

osteo/odontogenic differentiation
12
differentiation dental
8
dental pulp
8
pulp stem
8
stem cells
8
green synthesis
8
odontogenic differentiation
8
electron microscopy
8
adhesion capacity
8
capacity dpscs
8

Similar Publications

Effects of Hispidulin on the Osteo/Odontogenic and Endothelial Differentiation of Dental Pulp Stem Cells.

Pharmaceuticals (Basel)

December 2024

Department of Oral Physiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea.

Human dental pulp stem cells (HDPSCs) with multi-lineage differentiation potential and migration ability are required for HDPSC-based bone and dental regeneration. Hispidulin is a naturally occurring flavonoid with diverse pharmacological activities, but its effects on biological properties of HDPSCs remain unknown. Therefore, we investigated the effects of hispidulin on the differentiation potential and migration ability of HDPSCs and elucidated their underlying mechanisms.

View Article and Find Full Text PDF

Glutamine-αKG axis affects dentin regeneration and regulates osteo/odontogenic differentiation of mesenchymal adult stem cells via IGF2 m6A modification.

Stem Cell Res Ther

December 2024

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.

Background: Multi-lineage differentiation of mesenchymal adult stem cells (m-ASCs) is crucial for tissue regeneration and accompanied with metabolism reprogramming, among which dental-pulp-derived m-ASCs has obvious advantage of easy accessibility. Stem cell fate determination and differentiation are closely related to metabolism status in cell microenvironment, which could actively interact with epigenetic modification. In recent years, glutamine-α-ketoglutarate (αKG) axis was proved to be related to aging, tumorigenesis, osteogenesis etc.

View Article and Find Full Text PDF

Aim: Human stem cells derived from the apical papilla (SCAPs) are recognized for their multilineage differentiation potential and their capacity for functional tooth root regeneration. However, the molecular mechanisms underlying odonto/osteogenic differentiation remain largely unexplored. In this study, we utilized single-cell RNA sequencing (scRNA-seq) to conduct an in-depth analysis of the transcriptional changes associated with chemically induced osteogenesis in SCAPs.

View Article and Find Full Text PDF

Effects of inorganic phosphate on stem cells isolated from human exfoliated deciduous teeth.

Sci Rep

October 2024

Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Wang-Mai, Pathumwan, Bangkok, 10330, Thailand.

Article Synopsis
  • Calcium phosphate-based materials (CaP) show potential as dental pulp capping materials for baby teeth, with a focus on how inorganic phosphate (P) affects stem cells from exfoliated deciduous teeth (SHED).
  • Treatment with P led to an increase in late apoptosis without altering the overall cell cycle, while enhancing gene expression related to bone and tooth formation.
  • P promoted mineralization and calcium deposition but reduced fat cell formation by inhibiting specific pathways, suggesting a beneficial role for P in dental stem cell applications.
View Article and Find Full Text PDF
Article Synopsis
  • * Methylmethacrylate-based cement (MC) is a strong candidate for VPT due to its excellent sealing ability and mechanical properties, while phosphate-based glass (PBG) can aid in tissue regeneration.
  • * The study shows that a 5% PBG-integrated MC (5PIMC) not only retains the beneficial properties of MC but also enhances cell compatibility and hard tissue formation, making it a promising option for tooth repair.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!