Feed efficiency makes up a large part of sheep production, which also has a crucial impact on the economic benefits of producers. This study explores the polymorphism of gene associated with feed efficiency and detects the expression characteristics of in ten tissues of Hu sheep. The polymorphism of was recognized by using PCR amplification and Sanger sequencing, KASPar technology was used for genotyping subsequently, and the relationship between SNP and RFI is also studied. The results indicated that an intronic mutation g.24799148 C > T (rs 423395741) was identified in , and association analysis showed that the SNP g.24799148 C > T (rs 423395741) was significantly associated with RFI at 100-120, 100-140, 100-160, and 100-180 days ( < 0.05). The quantitative real-time PCR (qRT-PCR) result showed that was expressed in ten tissues, and the expression of gene in rumen tissue was significantly higher than in the other tested tissues. Therefore, these results indicated that the mutation locus may be used as a candidate molecular marker for evaluating the feed efficiency of Hu sheep.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10495398.2022.2145294DOI Listing

Publication Analysis

Top Keywords

feed efficiency
8
g24799148 c > t
8
c > t 423395741
8
polymorphism ovine
4
ovine gene
4
gene association
4
association residual
4
residual feed
4
feed intake
4
intake sheep
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Excessive inorganic trace elements are added to livestock and poultry feed to meet the needs of animals, accompanied by frequent occurrence of excretion and gastrointestinal stress. Replacing inorganic trace elements with organic trace elements provides a promising solution to alleviate these problems. Therefore, this study aimed to assess the impact of replacing all inorganic trace elements (ITMs) in feed on the growth performance, meat quality, serum parameters, trace element metabolism, and gut microbiota of finishing pigs.

View Article and Find Full Text PDF

Delays in getting injured patients to hospital in a timely manner can increase avoidable death and disability. Like many low- or middle-income countries (LMICs), Rwanda experiences delays related to lack of efficient prehospital communication and formal guidelines to triage patients for hospital care. This paper describes the protocol to develop, roll out, and evaluate the effectiveness of a Destination Decision Support Algorithm (DDSA) integrated in an electronic communication platform, '912Rwanda'.

View Article and Find Full Text PDF

Recent advances in phytase thermostability engineering towards potential application in the food and feed sectors.

Food Sci Biotechnol

January 2025

Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203 India.

Article Synopsis
  • This review highlights recent advancements in engineering thermostable phytase through genetic modification and immobilization techniques over the last seven years.
  • Genetic modifications have improved the enzyme's thermostability and functionality, while immobilization methods have helped retain 50-60% of its activity at temperatures above 50°C.
  • Phytase is essential in the food and feed industries, as it reduces phytate content to enhance nutritional value in flour and poultry feed, making it a robust option for high-temperature applications.
View Article and Find Full Text PDF

Net energy of grains for dairy goats differed with processing methods and grain types.

J Anim Sci Biotechnol

January 2025

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Background: The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism.

Methods: Eighteen castrated Guanzhong dairy goats (44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!