The nanofluidic ionic signal is governed by the interactions between ion species and the surface charge, surface wettability, and pore diameter of nanofluidic membranes. However, the effect of surface wettability on the ionic detection signal across the nanofluidic membrane remains poorly explored, limited nanofluidic applications in biochemical sensing. Here, we investigate the effect of surface wettability of the nanofluidic membrane on the ionic signal for the detection of hydrophobic drug molecules using a heterogeneous nanofluidic system. This ionic signal can be tuned by light or the presence of certain ions due to the tailoring of hydrophobic interactions between the ion species and membrane surface. Compared with traditional nanofluidic membranes whose ionic signal is governed by surface charge, the regulation mechanism reported here mainly dependents on specific hydrophobic interactions, which shows a more sensitive ionic signal to environments. By virtue of the mechanism, the selective detection of the three drug molecules was realized owing to their different hydrophobic interactions with membrane surfaces. These findings have implications for understanding mass transport in nanofluidic devices and biological components and porous media involving surface wettability in nanofluidic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.2c03690 | DOI Listing |
Acta Bioeng Biomech
September 2024
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
The aim of the study was to investigate the influence of the nitrocarburizing process carried out in low temperature plasma using the active screen at 440 °C on the structure and physicochemical properties of the 316LVM steel. In the paper, results of micro-structure and phase composition of the layers, roughness, and surface wettability, potentiodynamic pitting corrosion resistance, penetration of ions into the solution as well as biological tests were present. The studies were conducted for the samples of both mechanically polished and nitrocarburized surfaces, after sterilization, and exposure to the Ringer's solution.
View Article and Find Full Text PDFLangmuir
January 2025
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
Catechol-derived polymers form stable coatings on a wide range of materials including challenging to coat low surface energy polymers. Whether modification of the coating polymer with fluorophilic or hydrophobic groups is a successful approach to further favor the coating of hydrophobic or fluorophilic surfaces with catechol-based polymers remains ambiguous. Herein, we report the effect of a series of catechol-derived polyglycerol (PG)-based coatings and monolayer coatings on the wettability of polytetrafluoroethylene (PTFE), polystyrene, and poly(methyl methacrylate) surfaces.
View Article and Find Full Text PDFLangmuir
January 2025
Shandong Key Laboratory of Oilfield Chemistry, Department of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China.
The oil film formed by the adhesion of crude oil to the resin-asphalt adsorption layer is difficult to peel off due to the strong oil-solid interaction, which severely limits further improvements in oil recovery. Although conventional compound oil displacement systems can effectively reduce oil-water interfacial tension, facilitate oil droplet deformation, and alleviate the Jamin effect, they are insufficient in controlling the wettability of oleophilic rock surfaces. In this paper, sodium nonylphenol polyoxyethylene ether sulfate (NPES) and sodium lauric acid ethanolamine sulfonate (HLDEA) were compounded to construct an efficient oil displacement system that simultaneously achieves wettability control of lipophilic surfaces and ultralow oil-water interfacial tension.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.
Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.
This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!