Siwulski et al. (2020) investigated the occurrence of the lanthanides (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), scandium (Sc) and yttrium (Y) in 4 species of wild mushrooms, which were sampled over a 45 years period in Poland. The reported mean lanthanide concentrations for mushrooms were in the range from 539 to 1601 μg kg dry weight. These values are considered as highly elevated in the light of data published earlier for the same species, where the analytical results were assessed as not being biased by errors (these could arise from contamination of the samples with soil dust or unsuitable choice of analytical methodology including the use of unsuitable analytical instrumentation for measurement). It has long been established that the lanthanides are naturally distributed in ores, soil bedrock, soils, natural waters and plants in a pattern that reflects the Oddo-Harkins rule. This pattern is correspondingly reflected in fungi, including the same species and have been published earlier by other authors. However, when the individual lanthanide concentration data of B. edulis, I. badia, L. scabrum and M. procera from the study by Siwulski et al. are plotted, they do not display the expected sawtooth (zigzag) concentration pattern - in other words, the concentration data do not follow the Oddo-Harkins rule. Lanthanides are naturally found in very low concentration in foods including wild mushrooms. There is a striking lack of convergence in the results obtained for ICP-MS techniques, and the results obtained from ICP-OES measurement (as used by Siwulski et al.). If the reasons discussed here for anomalies in the reported lanthanides data hold true, how does this affect the data for other elements in mushrooms reported in the commented article?
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.137219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!