Gene set predictor for post-treatment Lyme disease.

Cell Rep Med

Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1603, New York, NY 10029, USA. Electronic address:

Published: November 2022

Lyme disease (LD) is tick-borne disease whose post-treatment sequelae are not well understood. For this study, we enrolled 152 individuals with symptoms of post-treatment LD (PTLD) to profile their peripheral blood mononuclear cells (PBMCs) with RNA sequencing (RNA-seq). Combined with RNA-seq data from 72 individuals with acute LD and 44 uninfected controls, we investigated differences in differential gene expression. We observe that most individuals with PTLD have an inflammatory signature that is distinguished from the acute LD group. By distilling gene sets from this study with gene sets from other sources, we identify a subset of genes that are highly expressed in the cohorts but are not already established as biomarkers for inflammatory response or other viral or bacterial infections. We further reduce this gene set by feature importance to establish an mRNA biomarker set capable of distinguishing healthy individuals from those with acute LD or PTLD as a candidate for translation into an LD diagnostic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9729821PMC
http://dx.doi.org/10.1016/j.xcrm.2022.100816DOI Listing

Publication Analysis

Top Keywords

gene set
8
lyme disease
8
individuals acute
8
gene sets
8
gene
5
set predictor
4
predictor post-treatment
4
post-treatment lyme
4
disease lyme
4
disease tick-borne
4

Similar Publications

Optogenetic systems utilize genetically encoded light-sensitive proteins to control cellular processes such as gene expression and protein localization. Like most synthetic systems, generation of an optogenetic system with desirable properties requires multiple design-test-build cycles. A yeast optogenetic toolkit (yOTK) allows rapid assembly of optogenetic constructs using Modular Cloning, or MoClo.

View Article and Find Full Text PDF

Optogenetic Control of B. subtilis Gene Expression Using the CcaSR System.

Methods Mol Biol

December 2024

Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, USA.

Optogenetics enables precise control of gene expression in a variety of organisms. We recently developed the first system for optogenetic control of transcription in Bacillus subtilis. This system is based on CcaSR, a light-responsive two-component regulatory system originally derived from Synechocystis PCC 6803.

View Article and Find Full Text PDF

Single-cell transcriptomes of dissecting the intra-tumoral heterogeneity of breast cancer microenvironment.

J Cancer Res Clin Oncol

December 2024

Department of Breast Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), #1, Jiazi Road, Lunjiao, Shunde District, Foshan, 528308, Guangdong Province, China.

Objective: To investigate the mechanism by which heterogeneity in breast cancer developed and acted in single-cell transcriptomes.

Methods: The composition of breast cancer based on the single-cell transcriptomes of 54,055 high-quality cells from clinical specimens of 4 malignant and 4 non-malignant patients were investigated.

Results: We identified six common expression programs and six subtype-specific expression programs form malignant epithelial cells.

View Article and Find Full Text PDF

Inhibitory killer cell immunoglobulin-like receptors (iKIRs) are a family of inhibitory receptors that are expressed by natural killer (NK) cells and late-stage differentiated T cells. There is accumulating evidence that iKIRs regulate T cell-mediated immunity. Recently, we reported that T cell-mediated control was enhanced by iKIRs in chronic viral infections.

View Article and Find Full Text PDF

Untrimmed ITS2 metabarcode sequences cause artificially reduced abundances of specific fungal taxa.

Appl Environ Microbiol

December 2024

Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA.

Unlabelled: Advances in DNA metabarcoding have greatly expanded our knowledge of microbial communities in recent years. Pipelines and parameters have been tested extensively for bacterial metabarcoding using the 16S rRNA gene and best practices are largely established. For fungal metabarcoding using the internal transcribed spacer (ITS) gene, however, only a few studies have considered how such pipelines and parameters can affect community prediction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!