Soil microbiome disruption methods are regularly used to reduce populations of microbial pathogens, often resulting in increased crop growth. However, little is known about the effect of soil microbiome disruption on non-pathogenic members of the soil microbiome. Here, we applied soil microbiome disruption in the form of moist-heat sterilization (autoclaving) to reduce populations of naturally occurring soil microbiota. The disruption was applied to analyze bacterial community rearrangement mediated by four crops (corn, beet, lettuce, and tomato) grown in three historically distinct agroecosystem soils (conventional, organic, and diseased). Applying the soil disruption enhanced plant influence on rhizosphere bacterial colonization, and significantly different bacterial communities were detected between the tested crops. Furthermore, bacterial genera showed significant abundance increases in ways both unique-to and shared-by each tested crop. As an example, corn uniquely promoted abundances of Pseudomonas and Sporocytophaga, regardless of the disrupted soil in which it was grown. Whereas the promotion of Bosea, Dyadobacter and Luteoliobacter was shared by all four crops when grown in disrupted soils. In summary, soil disruption followed by crop introduction amplified the plant colonization of potential beneficial bacterial genera in the rhizosphere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9668122 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277529 | PLOS |
Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Understanding the impact of different soil amendments on microbial communities and antibiotic resistance genes (ARGs) dissemination is crucial for optimizing agricultural practices and mitigating environmental risks. This study investigated the effects of different fertilizer regimes and biochar on plant-associated bacterial communities and ARGs dissemination. The biochar's structural and chemical characteristics were characterized using scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy, revealing a porous architecture with diverse functional groups.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:
Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.
View Article and Find Full Text PDFSci Total Environ
January 2025
College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Mangrove ecosystem has attracted global attention as a hotspot for mercury (Hg) methylation. Although numerous biotic and abiotic parameters have been reported to influence methylmercury (MeHg) production in sediments, the key factors determining the elevated MeHg levels in mangrove wetlands have not been well addressed. In this study, Hg levels in the sediments from different habitats (mudflats, mangrove fringe, and mangrove interior) in the Futian mangrove wetland were investigated, aiming to characterize the predominant factors affecting the MeHg production and distinguish the key microbial taxa responsible for Hg methylation.
View Article and Find Full Text PDFMicrobiome
January 2025
State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant‑Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!