Exposure to Metal Mixtures and Overweight or Obesity Among Chinese Adults.

Biol Trace Elem Res

Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, China.

Published: August 2023

Previous research has investigated the association between individual metal exposure and overweight/obesity (OW/OB). However, there is limited data about metal mixture exposure and OW/OB. This study aimed to explore the individual and joint effects of 21 metals on OW/OB and its metabolic phenotypes. A total of 4042 participants were enrolled in our study, and 51.0% of them were overweight/obese. We quantified 21 metal levels in the urine sample. OW/OB was defined as BMI ≥ 24 kg/m, while the metabolic phenotypes, including metabolic unhealthy overweight/obesity (MUOW/OB) and metabolic health overweight/obesity (MHOW/OB), were determined by BMI and metabolic state. We used logistic regression to analyze the effect of individual metal exposure on OW/OB and its metabolic phenotypes. Quantile g-computation was applied to evaluate the joint effect of metal exposure on OW/OB and its metabolic phenotypes. In logistic regression, zinc (Zn) was positively associated with OW/OB, with the odds ratio (OR) in the highest quartiles of 2.19 (95% confidence interval (CI), 1.74, 2.77; P trend < 0.001), while arsenic (As) and cadmium (Cd) were negatively associated with OW/OB (OR = 0.70 (0.56, 0.87) and 0.61 (0.48, 0.78), respectively). After adjustment for age, gender, education, cigarette smoking, alcohol drinking, physical activity, meat intake, and vegetable intake, Zn was positively associated with MUOW/OB, while As, Cd, nickel (Ni), and strontium (Sr) were negatively associated with MUOW/OB (all P trend < 0.05). Quantile g-computation showed a significantly negative association between metal mixture exposure and MUOW/OB. Our study suggested that metal mixture exposure might be negatively associated with OW/OB, particularly with MUOW/OB. Zn, As and Cd contributed most to the effect of the mixture. More prospective studies are warranted to confirm these findings and reveal the underlying mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12011-022-03484-0DOI Listing

Publication Analysis

Top Keywords

metabolic phenotypes
16
metal exposure
12
exposure ow/ob
12
ow/ob metabolic
12
individual metal
8
logistic regression
8
ow/ob
7
metabolic
7
exposure
5
metal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!