Previous research has investigated the association between individual metal exposure and overweight/obesity (OW/OB). However, there is limited data about metal mixture exposure and OW/OB. This study aimed to explore the individual and joint effects of 21 metals on OW/OB and its metabolic phenotypes. A total of 4042 participants were enrolled in our study, and 51.0% of them were overweight/obese. We quantified 21 metal levels in the urine sample. OW/OB was defined as BMI ≥ 24 kg/m, while the metabolic phenotypes, including metabolic unhealthy overweight/obesity (MUOW/OB) and metabolic health overweight/obesity (MHOW/OB), were determined by BMI and metabolic state. We used logistic regression to analyze the effect of individual metal exposure on OW/OB and its metabolic phenotypes. Quantile g-computation was applied to evaluate the joint effect of metal exposure on OW/OB and its metabolic phenotypes. In logistic regression, zinc (Zn) was positively associated with OW/OB, with the odds ratio (OR) in the highest quartiles of 2.19 (95% confidence interval (CI), 1.74, 2.77; P trend < 0.001), while arsenic (As) and cadmium (Cd) were negatively associated with OW/OB (OR = 0.70 (0.56, 0.87) and 0.61 (0.48, 0.78), respectively). After adjustment for age, gender, education, cigarette smoking, alcohol drinking, physical activity, meat intake, and vegetable intake, Zn was positively associated with MUOW/OB, while As, Cd, nickel (Ni), and strontium (Sr) were negatively associated with MUOW/OB (all P trend < 0.05). Quantile g-computation showed a significantly negative association between metal mixture exposure and MUOW/OB. Our study suggested that metal mixture exposure might be negatively associated with OW/OB, particularly with MUOW/OB. Zn, As and Cd contributed most to the effect of the mixture. More prospective studies are warranted to confirm these findings and reveal the underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-022-03484-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!