The regulation of root Plasma membrane (PM) Intrinsic Protein (PIP)-type aquaporins (AQPs) is potentially important for salinity tolerance. However, the molecular and cellular details underlying this process in halophytes remain unclear. Using free-flow electrophoresis and label-free proteomics, we report that the increased abundance of PIPs at the PM of the halophyte ice plant (Mesembryanthemum crystallinum L.) roots under salinity conditions is regulated by clathrin-coated vesicles (CCV). To understand this regulation, we analyzed several components of the M. crystallinum CCV complexes: clathrin light chain (McCLC) and subunits μ1 and μ2 of the adaptor protein (AP) complex (McAP1μ and McAP2μ). Co-localization analyses revealed the association between McPIP1;4 and McAP2μ and between McPIP2;1 and McAP1μ, observations corroborated by mbSUS assays, suggesting that AQP abundance at the PM is under the control of CCV. The ability of McPIP1;4 and McPIP2;1 to form homo- and hetero-oligomers was tested and confirmed, as well as their activity as water channels. Also, we found increased phosphorylation of McPIP2;1 only at the PM in response to salt stress. Our results indicate root PIPs from halophytes might be regulated through CCV trafficking and phosphorylation, impacting their localization, transport activity, and abundance under salinity conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9806614PMC
http://dx.doi.org/10.1093/plphys/kiac515DOI Listing

Publication Analysis

Top Keywords

ice plant
8
root plasma
8
plasma membrane
8
regulated clathrin-coated
8
clathrin-coated vesicles
8
response salt
8
salt stress
8
salinity conditions
8
plant root
4
membrane aquaporins
4

Similar Publications

Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.

View Article and Find Full Text PDF

Long-term feeding of high plant-based diets supplemented with additive mixtures improves the fillet quality of rainbow trout, Oncorhynchus mykiss.

Food Chem

December 2024

Aquaculture Research Institute, Department of Animal, Veterinary & Food Sciences, University of Idaho, Moscow, ID 83844-2160, USA; Bio Nutrinova LLC, Pullman, WA, 99163-3718, USA. Electronic address:

Although more sustainable, feeding fish solely plant protein (PP) deteriorates their fillet quality more than animal counterparts, which additives can alleviate. This study investigated the effects of supplementing high PP diets with two additive mixtures on the fillet quality of rainbow trout (Oncorhynchus mykiss). Fish (∼2.

View Article and Find Full Text PDF

Knowing mechanisms that facilitate the emergence of post-glacial ecosystems is urgently required given rapid recent glacial retreat in high latitude and high elevation regions. We examined the effect of nutrient hotspots created via communal dung deposition by wild, native Andean camelids on soil abiotic and biotic properties and plant cover in the rapidly deglaciating Cordillera Vilcanota, southeastern Peru. Animal-modified proglacial soils were significantly enriched in all measured edaphic properties compared to reference glacial-till soils of the same age adjacent to animal-modified soil patches.

View Article and Find Full Text PDF

GC-MS analysis, anti-inflammatory and anti-proliferative properties of the aerial parts of three .

Toxicol Rep

December 2024

Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Kornish El-Nile, Warrak El-Hadar, Giza 12411, Egypt.

Background: Due to their variability and safety, widespread research on phytochemicals continually encourages researchers to study various plants for their potential health benefits.

Objectives: This study aims to explore the phytochemical constituents of the aerial parts of three spp.; , and existed in Egyptian nature using GC-MS analysis and studying their different biological activities in correlation to computational analysis.

View Article and Find Full Text PDF

Lonicera caerulea genome reveals molecular mechanisms of freezing tolerance and anthocyanin biosynthesis.

J Adv Res

December 2024

Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:

Introduction: Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!