A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epitaxial Growth of Single-Layer Kagome Nanoflakes with Topological Band Inversion. | LitMetric

AI Article Synopsis

  • The kagome lattice is being studied for its potential to create unique topological phases with strongly interacting electrons, but making 2D materials with these properties is challenging.
  • Researchers have successfully grown single-layer iron germanide kagome nanoflakes using a technique called molecular beam epitaxy.
  • Their experiments revealed important electronic features, including topological band inversion and edge modes, which suggest potential for future research on unique properties of these materials, like geometric frustration.

Article Abstract

The kagome lattice has attracted intense interest with the promise of realizing topological phases built from strongly interacting electrons. However, fabricating two-dimensional (2D) kagome materials with nontrivial topology is still a key challenge. Here, we report the growth of single-layer iron germanide kagome nanoflakes by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we unravel the real-space electronic localization of the kagome flat bands. First-principles calculations demonstrate the topological band inversion, suggesting the topological nature of the experimentally observed edge mode. Apart from the intrinsic topological states that potentially host chiral edge modes, the realization of kagome materials in the 2D limit also holds promise for future studies of geometric frustration.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c08895DOI Listing

Publication Analysis

Top Keywords

growth single-layer
8
kagome nanoflakes
8
topological band
8
band inversion
8
kagome materials
8
kagome
6
topological
5
epitaxial growth
4
single-layer kagome
4
nanoflakes topological
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!