Aperiodic spectral slope is a measure of spontaneous neural oscillatory activity that is believed to support regulation of brain responses to environmental stimuli. Compared to typically developing (TD) control participants, children with attention deficit hyperactivity disorder (ADHD) have been shown to have flatter aperiodic spectral slope at rest as well as attenuated event-related potential (ERP) amplitudes in response to environmental stimuli. A small body of research suggests that aperiodic slope may also explain differences in behavioral responses. In this study, we examine associations between prestimulus aperiodic slope, stimulus characteristics, environmental demands, and neural as well as behavioral responses to these stimuli. Furthermore, we evaluate whether ADHD diagnostic status moderates these associations. Seventy-nine children with ADHD and 27 TD school-age children completed two visual ERP experiments with predictable alternating presentations of task-relevant and task-irrelevant stimuli. Aperiodic slope was extracted from prestimulus time windows. Prestimulus aperiodic slope was steeper for the TD relative to ADHD group, driven by task-relevant rather than task-irrelevant stimuli. For both groups, the aperiodic slope was steeper during a task with lower cognitive demand and before trials in which they responded correctly. Aperiodic slope did not mediate the association between ADHD diagnosis and attenuated P300 amplitude. The aperiodic spectral slope is dynamic and changes in anticipation of varying stimulus categories to support performance. The aperiodic slope and P300 amplitude reflect distinct cognitive processes. Background neural oscillations, captured via aperiodic slope, support cognitive behavioral control and should be included in etiological models of ADHD. This study constitutes the first investigation of associations between aperiodic spectral slope and three aspects of neurocognition: event-related potential (ERP) amplitudes, cognitive load, and task performance. We find that background oscillatory activity is dynamic, shifting in anticipation of varying levels of task relevance and in response to increasing cognitive load. Moreover, we report that aperiodic activity and ERPs constitute distinct neurophysiological processes. Children with attention deficit hyperactivity disorder (ADHD) show reduced aperiodic dynamics in addition to attenuated ERP amplitudes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902214 | PMC |
http://dx.doi.org/10.1152/jn.00295.2022 | DOI Listing |
Eur J Neurosci
January 2025
Laboratory of Human Cell Neurophysiology, N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Moscow, Russia.
Excessive beta oscillations in the subthalamic nucleus are established as a primary electrophysiological biomarker for motor impairment in Parkinson's disease and are currently used as feedback signals in adaptive deep brain stimulation systems. However, there is still a need for optimization of stimulation parameters and the identification of optimal biomarkers that can accommodate varying patient conditions, such as ON and OFF levodopa medication. The precise boundaries of 'pathological' oscillatory ranges, associated with different aspects of motor impairment, are still not fully clarified.
View Article and Find Full Text PDFDelays in language often co-occur among toddlers diagnosed with autism. Despite the high prevalence of language delays, the neurobiology underlying such language challenges remains unclear. Prior research has shown reduced EEG power across multiple frequency bands in 3-to-6-month-old infants with an autistic sibling, followed by accelerated increases in power with age.
View Article and Find Full Text PDFPsychophysiology
January 2025
Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts, USA.
The aperiodic "slope" of the EEG power spectrum (i.e., aperiodic exponent, commonly represented as a slope in log-log space) is hypothesized to index the cortical excitatory-inhibitory balance.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Neurosurgery, Baylor College of Medicine, Houston, USA.
Alteration of responses to salient stimuli occurs in a wide range of brain disorders and may be rooted in pathophysiological brain state dynamics. Specifically, tonic and phasic modes of activity in the reticular activating system (RAS) influence, and are influenced by, salient stimuli, respectively. The RAS influences the spectral characteristics of activity in the neocortex, shifting the balance between low- and high-frequency fluctuations.
View Article and Find Full Text PDFJ Sleep Res
December 2024
Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands.
Traditionally categorized as a uniform sleep phase, rapid eye movement sleep exhibits substantial heterogeneity with its phasic and tonic constituents showing marked differences regarding many characteristics. Here, we investigate how tonic and phasic states differ with respect to aperiodic neural activity, a marker of arousal and sleep. Rapid eye movement sleep heterogeneity was assessed using either binary phasic-tonic (n = 97) or continuous (in 60/97 participants) approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!