A Golgi oxygen sensor controls intestinal mucin glycosylation.

EMBO J

Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden.

Published: January 2023

Intestinal mucin glycosylation is important for mucus-bacterial homeostasis and is altered in disease. In this issue of The EMBO Journal, Ilani et al (2022) identify the Golgi enzyme quiescin sulfhydryl oxidase 1 (QSOX1) as a novel mucus regulator by controlling mucin sialylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841322PMC
http://dx.doi.org/10.15252/embj.2022113013DOI Listing

Publication Analysis

Top Keywords

intestinal mucin
8
mucin glycosylation
8
golgi oxygen
4
oxygen sensor
4
sensor controls
4
controls intestinal
4
glycosylation intestinal
4
glycosylation mucus-bacterial
4
mucus-bacterial homeostasis
4
homeostasis altered
4

Similar Publications

Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with or intratracheal inoculation with LPS.

Front Immunol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Background: A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP).

Aim: To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model.

Methods: We established two standardized models of post-ICH pneumonia by nasal inoculation with () or intratracheal inoculation with lipopolysaccharide (LPS).

View Article and Find Full Text PDF

Purpose: Gut microbiota dysbiosis significantly impacts ulcerative colitis (UC) progression and exacerbation. Probiotics show promise in UC management. This study evaluated the effects of different doses of LV149, an aquatic-derived probiotic, on gut injury repair in male C57BL/6 mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) and investigated the underlying mechanisms.

View Article and Find Full Text PDF

Chemotherapeutic therapies for cancer are frequently associated with cytotoxic side effects that can be harmful to human health, including the development of intestinal mucositis (IM). It mostly affects the gastrointestinal tract, causing ulceration, inflammation, and the formation of lesions in the colon. Surprisingly, despite the frequency of IM, therapeutic choices remain restricted.

View Article and Find Full Text PDF

Background: In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM).

Methods: T2DM was induced in Wistar rats using streptozotocin.

View Article and Find Full Text PDF

Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells.

Invest Ophthalmol Vis Sci

January 2025

Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States.

Purpose: To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion.

Methods: Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!