With the acceleration of the pace of life, people may face all kinds of pressure, and anxiety has become a common mental issue that is seriously affecting human life. Safe and effective food-derived compounds may be used as anti-anxiety compounds. In this study, anti-anxiety compounds were collected and curated for database construction. Quantitative structure-activity relationship (QSAR) models were developed using a combination of various machine-learning approaches and chemical descriptors to predict natural compounds in food with anti-anxiety effects. High-throughput molecular docking was used to screen out compounds that could function as anti-anxiety molecules by inhibiting γ-aminobutyrate transaminase (GABA-T) enzyme, and 7 compounds were screened for activity verification. Pharmacokinetic analysis revealed three compounds (quercetin, lithocholic acid, and ferulic acid) that met Lipinski's Rule of Five and inhibited the GABA-T enzyme to alleviate anxiety . The established QSAR model combined with molecular docking and molecular dynamics was proved by the synthesis and discovery of novel food-derived anti-anxiety compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2fo01315kDOI Listing

Publication Analysis

Top Keywords

anti-anxiety compounds
16
compounds
9
molecular docking
8
gaba-t enzyme
8
anti-anxiety
6
structure-guided discovery
4
discovery food-derived
4
food-derived gaba-t
4
gaba-t inhibitors
4
inhibitors hunters
4

Similar Publications

Sesamol (SES) and linalool (LIN) are aromatic compounds that have neuroprotective effects. The main purpose of this study is to evaluate the anxiolytic activity of LIN and SES co-treatment on Swiss albino mice and analyze its possible mechanism through in silico study. In this sense, the mice were given the gamma-aminobutyric acid type A receptors (GABA) agonist diazepam (DZP; 3 mg/kg, p.

View Article and Find Full Text PDF

Anxiety disorders are one of the most common mental health pathologies in the world. They require searc h and development of novel effective pharmacologically active substances. Thus, the development of new approaches to the search for anxiolytic substances by artificial intelligence methods is an important area of modern bioinformatics and pharmacology.

View Article and Find Full Text PDF

Background: standardised extracts, characterised by the presence of hydroxycinnamic acids, have been experimentally demonstrated to be endowed with anti-anxiety and anti-insomnia pharmacological actions. These effects, probably attributable, at least in part, to the role played by rosmarinic acid on GABA-T, have not always been observed in a reproducible manner in humans, perhaps due to the poor bioavailability of these compounds.

Methods: as nutraceuticals and botanicals could be an alternative option to prescription medications for alleviating symptoms of mild anxiety and insomnia, we have verified in a prospective, double-blind, placebo-controlled, and cross-over study the supporting role on sleep quality played by a highly standardised extract, formulated as Phytosome™ (MOP) to improve the oral bioavailability of its active polyphenolic components.

View Article and Find Full Text PDF

Macaiba pulp is a source of bioactive compounds. This study aimed to evaluate the effects of macaiba pulp on anxiety behavior, memory and brain oxidative stress in dyslipidemic rats. The animals were divided into four groups (n = 10): Control (CG), Macaíba (MG), Dyslipidemic (DG) and Dyslipidemic Macaiba (DMG).

View Article and Find Full Text PDF

Anxiety and depression are mental disorders that have been exponentially increasing over the last decades. Psychopharmacology emerged to try to alleviate the symptoms of these disorders; however, the side effects and the time it takes to achieve the desired effect are factors that decrease the search for and adherence to treatment. To remedy this situation, new compounds capable of improving the performance of these medications and reducing their adverse effects have been sought.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!