Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in recent years. However, for the large-scale industrial application of electrochemical hydrogenations, low-resistance zero-gap electrolysers operating at high current densities and high substrate concentrations, ideally applying noble-metal-free catalyst systems, are required. Because of their conductivity, stability, and stoichiometric flexibility, transition metal sulfides of the pentlandite group have been thoroughly investigated as promising electrocatalysts for electrochemical applications but were not investigated for electrochemical hydrogenations of organic materials. An initial screening of a series of first row transition metal pentlandites revealed promising activity for the electrochemical hydrogenation of alkynols in water. The most active catalyst within the series was then incorporated into a zero-gap electrolyser enabling the hydrogenation of alkynols at current densities of up to 240 mA cm, Faraday efficiencies of up to 75%, and an alkene selectivity of up to 90%. In this scalable setup we demonstrate high stability of catalyst and electrode for at least 100 h. Altogether, we illustrate the successful integration of a sustainable catalyst into a scalable zero-gap electrolyser establishing electrosynthetic methods in an application-oriented manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629083PMC
http://dx.doi.org/10.1039/d2sc04647dDOI Listing

Publication Analysis

Top Keywords

electrosynthetic methods
8
electrochemical hydrogenations
8
current densities
8
transition metal
8
hydrogenation alkynols
8
zero-gap electrolyser
8
electrochemical
5
opening pathway
4
pathway scalable
4
scalable electrochemical
4

Similar Publications

High-throughput experimentation (HTE) has accelerated academic and industrial chemical research in reaction development and drug discovery and has been broadly applied in many domains of organic chemistry. However, application of HTE in electrosynthesis-an enabling tool for chemical synthesis-has been limited by a dearth of suitable standardized reactors. Here we report the development of microelectronic devices, which are produced using standard nanofabrication techniques, to enable wireless electrosynthesis on the microlitre scale.

View Article and Find Full Text PDF

Toxic organic solvents and electrolytes, traditionally indispensable for electro-organic synthesis, are now being reconsidered. In developing more sustainable electro-organic synthesis, we've harnessed the aqueous micelles as solvents and electrolyte-like structures when deformed under an electric field. The technology is showcased in synthetically highly valued hydrodefluorination reactions of difluorinated indoles.

View Article and Find Full Text PDF

Modified Working Electrodes for Organic Electrosynthesis.

ACS Org Inorg Au

December 2024

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.

Organic electrosynthesis has gained much attention over the last few decades as a promising alternative to traditional synthesis methods. Electrochemical approaches offer numerous advantages over traditional organic synthesis procedures. One of the most interesting aspects of electroorganic synthesis is the ability to tune many parameters to affect the outcome of the reaction of interest.

View Article and Find Full Text PDF

An Electrochemical Screening Reactor Kit for Rapid Optimization of Electrosynthesis Applications.

ChemSusChem

December 2024

Activation of Small Molecules/Technical Electrochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.

Electrosynthetic processes powered by renewable energy present a viable solution to decarbonize the chemical industry, while producing essential chemical products for modern society. However, replacing well-established thermocatalytic methods with renewable-powered electrosynthesis requires cost-efficient and highly optimized systems. Current optimization of electrolysis conditions towards industrial applications involving scalable electrodes is time-consuming, highlighting the necessity for the development of electrochemical setups aimed at rapid and material efficient testing.

View Article and Find Full Text PDF

Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!