A highly enantio- and regio-selective Markovnikov hydromonofluoro(methyl)alkylation of 1,3-dienes was developed using redox-neutral nickel catalysis. It provided a facile strategy to construct diverse monofluoromethyl- or monofluoroalkyl-containing chiral allylic molecules. Notably, this represents the first catalytic asymmetric Markovnikov hydrofluoroalkylation of olefins. The practicability of this methodology is further highlighted by its broad substrate scope, mild base-free conditions, excellent enantio- and regio-selectivity, and diversified product elaborations to access useful fluorinated building blocks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629049 | PMC |
http://dx.doi.org/10.1039/d2sc03958c | DOI Listing |
Org Lett
December 2024
College of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421000, People's Republic of China.
Herein we successfully utilize various directing groups to achieve a ligand-enabled nickel-catalyzed 1,2-borylalkylation of unactivated alkenes. A β-amino alcohol was employed as the ligand for non-asymmetric 1,2-borylalkylation of unactivated alkenes, while a bulky chiral diamine ligand was used to achieve the asymmetric 1,2-borylalkylation of allyl amides.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Chemistry, Jadavpur University, Kolkata 700032, India.
Herein, a nickel-catalyzed divergent reductive-Heck reaction of 1-bromo-2-((2-(aryl/alkyl ethynyl)phenoxy)methyl)benzene and 2-(aryl/alkyl ethynyl)phenyl 2-bromobenzenesulfonate derivatives has been demonstrated through the regulation of reducing agents and solvent systems. This scalable protocol offers regio- and stereoselective access to functionalized dibenzo[,]oxepine and dibenzo[,][1,2]oxathiepine 6,6-dioxide scaffolds in high to excellent yields under a mild set of reaction conditions. This methodology offers a predictable route for the synthesis of medium ring oxygen heterocycles and demonstrates wide substrate scope and outstanding tolerance to various functional groups like hydroxyl and, of course, practical instance via the synthesis of doxepin and nordoxepin molecules.
View Article and Find Full Text PDFNat Commun
November 2024
The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, PR China.
Angew Chem Int Ed Engl
January 2025
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China.
Precise synthesis of carboxylic acids via catalytic carboxylation with CO is highly appealing. Although considerable advancements have been achieved in difunctionalizing carboxylation of unsaturated hydrocarbons, the asymmetric variants are conspicuously underdeveloped, particularly in addressing axially chiral alkenes. Herein, we report the first catalytic atroposelective carboxylation of alkynes with CO.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
Primary amines serve as key synthetic precursors to most other -containing compounds, which are important in organic and medicinal chemistry. Herein, we present a NiH-catalyzed mild ipso- and remote hydroamination technique that utilizes organic azides as deprotectable primary amine sources. This strategy offers a highly flexible platform for the efficient construction of α-chiral branched primary amines, as well as linear primary amines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!