Background: Intracranial hemorrhage (ICH) requires emergent medical treatment for positive outcomes. While previous artificial intelligence (AI) solutions achieved rapid diagnostics, none were shown to improve the performance of radiologists in detecting ICHs. Here, we show that the Caire ICH artificial intelligence system enhances a radiologist's ICH diagnosis performance.

Methods: A dataset of non-contrast-enhanced axial cranial computed tomography (CT) scans (n=532) were labeled for the presence or absence of an ICH. If an ICH was detected, its ICH subtype was identified. After a washout period, the three radiologists reviewed the same dataset with the assistance of the Caire ICH system. Performance was measured with respect to reader agreement, accuracy, sensitivity, and specificity when compared to the ground truth, defined as reader consensus.

Results: Caire ICH improved the inter-reader agreement on average by 5.76% in a dataset with an ICH prevalence of 74.3%. Further, radiologists using Caire ICH detected an average of 18 more ICHs and significantly increased their accuracy by 6.15%, their sensitivity by 4.6%, and their specificity by 10.62%. The Caire ICH system also improved the radiologist's ability to accurately identify the ICH subtypes present.

Conclusion: The Caire ICH device significantly improves the performance of a cohort of radiologists. Such a device has the potential to be a tool that can improve patient outcomes and reduce misdiagnosis of ICH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9653089PMC
http://dx.doi.org/10.7759/cureus.30264DOI Listing

Publication Analysis

Top Keywords

caire ich
24
ich
14
intracranial hemorrhage
8
artificial intelligence
8
ich detected
8
ich system
8
caire
6
deep learning
4
system
4
learning system
4

Similar Publications

Background: Tools to increase the turnaround speed and accuracy of imaging reports could positively influence ED logistics. The Caire ICH is an artificial intelligence (AI) software developed for ED physicians to recognise intracranial haemorrhages (ICHs) on non-contrast enhanced cranial CT scans to manage the clinical care of these patients in a timelier fashion.

Methods: A dataset of 532 non-contrast cranial CT scans was reviewed by five board-certified emergency physicians (EPs) with an average of 14.

View Article and Find Full Text PDF

Background: Artificial intelligence applications have gained traction in the field of cerebrovascular disease by assisting in the triage, classification, and prognostication of both ischemic and hemorrhagic stroke. The Caire ICH system aims to be the first device to move into the realm of assisted diagnosis for intracranial hemorrhage (ICH) and its subtypes.

Methods: A single-center retrospective dataset of 402 head noncontrast CT scans (NCCT) with an intracranial hemorrhage were retrospectively collected from January 2012 to July 2020; an additional 108 NCCT scans with no intracranial hemorrhage findings were also included.

View Article and Find Full Text PDF

Background: Intracranial hemorrhage (ICH) requires emergent medical treatment for positive outcomes. While previous artificial intelligence (AI) solutions achieved rapid diagnostics, none were shown to improve the performance of radiologists in detecting ICHs. Here, we show that the Caire ICH artificial intelligence system enhances a radiologist's ICH diagnosis performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!